

Course Specification (Bachelor)

Course Title: Bioengineering and Nanobiotechnology

Course Code: 2054206-3

Program: Bachelor in Biotechnology

Department: Biotechnology Department

College: College of Science

Institution: Taif University

Version: : V4

Last Revision Date: 3/1445 – 9/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	4
D. Students Assessment Activities	5
E. Learning Resources and Facilities	5
F. Assessment of Course Quality	5
G. Specification Approval	6

A. General information about the course:

1. Course Identification

1. 0	redit hours:				
3 (2	lecture, 1 lab)				
2. C	course type				
Α.	🗆 University	□ College	🗵 Department	🗆 Track	□ Others
В.	B. □ Required				
3. L	3. Level/year at which this course is offered: (8 th Level / 4 th Year)				

4. Course general Description:

The knowledge gained in this course will enable the students to think and use nanotechnology as a new approach to address physical, chemical, biological, and environmental phenomena. It will cover synthesis methods, properties and applications of engineered nanomaterials, engineering aspects (micro-and nanofabrication, self-assembly, micro- and nanofluidic) of biosensors, lab-on-chips and biological/medical microdevices. The course will cover the

development of new tools for food, agriculture, health, cosmetics production and monitoring and control biological and environmental processes and phenomena.

5. Pre-requirements for this course (if any):

Bioinformatics, 2054102-3

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

Recognize the wide range of applications of nanobiotechnology and its interdisciplinary aspect, the principles governing the effect of size on material properties at the Nano scale and perform quantitative analysis, a working knowledge in nanotechnology techniques and acquire the ability to use them to solve problems in bioengineering, biomedicine, and agricultural/environmental issues.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	45	100%

No	Mode of Instruction	Contact Hours	Percentage
2	E-learning	-	-
3	HybridTraditional classroomE-learning	-	-
4	Distance learning	-	-

3. Contact Hours (based on the academic semester)

.....

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	15
3.	Field	-
4.	Tutorial	-
5.	Others (specify)	-
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unders	standing		
1.1	Recognize various nanoparticles and various fabrications methods for the production of nanoparticles	K.1	Lecture	Written Exam
1.2	State types of the nano-biosensors and nanoparticles application in different fields	K.5	Lecture & Discussion	Written Exam

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.0	Skills		U	
2.1	Illustrate the fabrication of lab chips	S.2	Discussion	Group Report
2.2	Analyze the role bio- nanotechnology in enzymes properties and drug delivery	S.2	Lecturer, Discussion	Written Exam.
•••				
3.0	Values, autonomy, and	d responsibility		
3.1	Adopt the values of academic and professional morals	V.1	Project	Report, Presentation
3.2	Adapt to the vales and rules of the team work	V.2	Group Discussion	Performance Evaluation
•••				

C. Course Content

No	List of Topics	Contact Hours
1.	Course overview, The world of small dimensions, Nanoscale Properties (Electrical, Optical, Chemical)	2
2.	Nanoscale visualization techniques 1: Electron microscopy (TEM, SEM, Cryo-SEM)	4
3.	Bionanomaterials 1: Biological building blocks, Bionanostructures (nanofibers, nanotubes, nanocellulose)	4
4.	Biological nanomachines 1: Ribosomes, Photosynthesis systems, Bionanomotors	2
5.	Engineered Nanomaterials 1: Carbon nanomaterials (fullerenes, graphene, nanotubes, nanofiber	3
6.	Engineered Nanomaterials 3: Magnetic nanoparticles (synthesis, properties and applications)	3
7.	Nanotechnology by self-assembly 3: Protein nanotechnology, Nanotechnology by self-assembly 4: DNA nanotechnology	4
8.	Diffusion in solid phase and drug delivery	2
9.	Biological and medical microdevices: lab on chips, organ-onchips, Biosensors (fabrication, functionalization, applications)	2
10.	Nanotechnology safety and the environment	4

Total	30

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Midterm Exam	Week 7	20%
2.	Periodical exam (Quiz)	Week 9	10%
3.	Report, Presentation	Week 11	10%
4.	Practical Exam, Performance Evaluation	Week 14	20%
5.	Final Exam	Week 15	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Leggett, G. J.; Jones, R. A. L., Bio-nanotechnology. In Nanoscale Science and Technology, John Wiley & amp;Sons,Ltd: 2005; pp 419-445. Bucke, C., Bio-nanotechnology—lessons from nature. By David S Godsell. Wiley-Liss, Hoboken, NJ, 2004. 352pp, ISBN 0 471 41719 X. Journal of Chemical Technology & amp; Biotechnology 2005, 80 (8), 964-965. Lectures in Bioengineering and nanobiotechnology
Supportive References	 Dong, H.; Hu, W., Organic Nanomaterials. In Springer Handbook of Nanomaterials, Vajtai, R., Ed. Springer, Berlin Heidelberg: 2013; pp 905-940. Gibbs, M. R. J., Nanomagnetic Materials and Devices. In Nanoscale Dong, H.; Hu, W., Organic Nanomaterials. In Springer Handbook of Nanomaterials, Vajtai, R., Ed. Springer, Berlin Heidelberg: 2013; pp 905-940. Gibbs, M. R. J., Nanomagnetic Materials and Devices. In Nanoscale
Electronic Materials	Journal of Nanobiotechnology. https://jnanobiotechnology.biomedcentral.com/
Other Learning Materials	Nanobiotechnology - Latest research and news Nature https://www.nature.com/subjects/nanobiotechnology

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	One classroom with internet connection for 2 hours a week and one laboratory for 3 hours a week with internet facility.
Technology equipment (projector, smart board, software)	Data show and Smart board
Dther equipment (depending on the nature of the specialty)	 -Nanofabrication and nanomanipulation instruments: - 3D Printing system for microfluidic devices - Characterization instruments: - High precision syringe pumps, Peristaltic pumps Potentiostates, Optical Waveguide Lightmode Spectroscope (OWLS), Atomic Force Microscope (AFM), Optical Microscopes (white light/epifluorescence), Electrical Impedance spectroscopy (EIS), Multi- frequency Lock-in Amplifier, Sub-femtoamp Remote, SourceMeter Instrument, -Molecular/cell biology instruments: - Biological safety cabinet (class II), Microwell plate readers, Protein and DNA electrophoresis systems, Microincubator Okolab, Nanodrop spectrophotometer, CO2 incubator for cells: Galaxy® 48 S, 48 L, 230 V/50/60 Hz standard, Cell culture cabin: Bioii-Advance 3 Microfluidics instruments: - High precision syringe pumps, Peristaltic pumps

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of Students assessment	Students	Indirect
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Students, Peer Reviewer	Indirect, Direct
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval		
COUNCIL /COMMITTEE	DEPARTMENT COUNCIL	
REFERENCE NO.	6	
DATE	5/11/2023	

