

Course Specification — (Bachelor)

Course Title: Calculus 3

Course Code: 2022202-4

Program: Bachelor in Mathematics

Department: Mathematics and Statistics Department

College: Faculty of Sciences

Institution: Taif University

Version: 1

Last Revision Date: 20/05/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	6
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. C	1. Credit hours: 4(4,0,0)				
2. C	ourse type				
Α.	□University		⊠ Department	Track	Others
B. Required Elective					
3. Level/vear at which this course is offered: Level 4 / Second Year					

4. Course general Description:

This course covers some topics in advanced calculus (real functions of several variables, limits, continuity, partial derivatives and differentials, Jacobian matrix, chain rule, directional derivatives, Gradients Tangent Planes and Normal Vectors, maximum and minimum of Functions of Two Variables, Lagrange multipliers). The course focus also on Double Integrals over Nonrectangular Regions- Double Integrals in Polar Coordinates, Triple Integrals- Triple Integrals in Cylindrical Coordinates and Spherical Coordinates, Change of Variables in Multiple Integrals, Jacobians, Line Integrals- Existence of Antiderivative, Surface Area and Surface Integrals, Green's Theorem in Vector Form, Divergence Theorem and Stokes's Theorem.

5. Pre-requirements for this course (if any):

Calculus II (2022104-4)

6. Co-requirements for this course (if any):

None

7. Course Main Objective(s):

- Recognize the Limits and Continuity of Functions of Two or More Variables.
- Identify the Limits and Continuity of Functions of Two or More Variables.
- Explain the limit, continuity, partial derivatives and the total differential for a function of several variables.
- Apply performance of different Evaluate double, triple integrals and surface integral.
- Demonstrate the derivative concepts to find tangent lines to level curves and to solve optimization problems.

2. Teaching mode (mark all that apply)			
No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	4Hr /Week	100%
2	E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	60
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understand	ing		
1.1	Recognize the Limits and Continuity of Functions of Two or More Variables. Identify the Limits and	K1	LecturesGroup discussions	QuizzesAssignments
1.2	Continuity of Functions of Two or More Variables.	K1	LecturesGroup discussions	ExamsAssignments
2.0	Skills			
2.1	Explain the limit, continuity, partial derivatives and the total differential for a	S1	Interactive classesGroup discussions	QuizzesAssignments

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	function of several variables.			
2.2	Apply performance of different Evaluate double, triple integrals and surface integral.	S1	LecturesGroup discussions	ExamsQuizzes
2.3	Demonstrate the_derivative concepts to find tangent lines to level curves and to solve optimization problems.	S1	LecturesSelf-learning through the website	ExamsQuizzesAssignments
3.0	Values, autonomy, and resp	onsibility		
3.1	Show the responsibility for their own learning and continuing personal and professional development.	V2	• projects	• Oral exams

C. Course Content

No	List of Topics	Contact Hours
1.	Functions of Several Variables	
2.	Limits- Continuity of Functions of two Variables	4
3.	Partial Derivatives-Differentials Of Functions of Several Variables	4
4.	The Chain Rule- Tangent Planes	4
5.	Directional Derivatives- Local Maxima and Minima of Functions of Two Variables	4
6.	Absolute Maxima and Minima of Functions of Two Variables- Lagrange Multipliers of Functions of Several Variables	4
7.	First Midterm exam	4
8.	Double Integrals and double Integrals over Nonrectangular Regions	4
9.	Double Integrals in Polar Coordinates-Triple Integrals	4
10.	Triple Integrals in Cylindrical Coordinates- Spherical Coordinates-Triple Integrals in Spherical Coordinates.	4
11.	Change of Variables in Multiple Integrals- Jacobians-Line Integrals- Existence of anti-derivative.)	4
12	Surface area and surface integrals.	4
13.	Second Midterm exam	4
14.	Green's Theorem in Vector Form	4
15	Stokes's Theorem and Divergence Theorem	4
	Total	60

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes	Continuous Evaluation	10 %
2.	Assignments, report	Continuous Evaluation	10 %
3.	Midterm 1 Exam	8-9	15%
4.	Midterm 2 Exam	12-13	15%
5.	Final Exam	15-16	50%

D. Students Assessment Activities

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	H. Anton, I. Bivens and S. Davis, (2010), Calculus: Early Transcendentals, International Student Version, 10th Edition, USA, John Wiley & Sons, Inc
Supportive References	J. Stewart, (2012), Calculus: Early Transcendentals,7th edition, USA, Brooks/Cole
Electronic Materials	Lectures available in Blackboard
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources	
facilities		
(Classrooms, laboratories, exhibition rooms,	Classrooms	
simulation rooms, etc.)		
Technology equipment	Data ahaw Blackhoord	
(Projector, smart board, software)	Data Show, Diackboard	
Other equipment	Nere	
(Depending on the nature of the specialty)	None	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Program Leader	Direct & Indirect
Effectiveness of students assessment	Faculty, Program Leader	Direct

Assessment Areas/Iss	sues	Assessor	Assessment Methods	
Quality of learning resources		Students, Faculty	Indirect	
The extent to which CLOs have been achieved		Faculty	Direct & Indirect	
Other				
Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)				
Assessment Methods (Direct, Indirect)				
G. Specification Approval				
COUNCIL /COMMITTEE	DUNCIL /COMMITTEE Department Council			
REFERENCE NO.	4			

قسم الرياضيات والإحصاء

October 2023

Mathematics and Statistics Department

DATE