

Course Specification (Postgraduate)

Course Title: Partial Differential Equations

Course Code: 202606-3

Program: Master of applied mathematics

Department: Mathematics and Statistics

College: Science

Institution: Taif university

Version: 1

Last Revision Date: 20/10/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	5
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	6
G. Specification Approval Data:	6

A. General information about the course:

□ College

1. Course Identification:

1. Credit hours: (3)

2. Course type

Α.	□University

B. 🛛 Required

Department DTrack

3. Level/year at which this course is offered: Level 1/First Year

4. Course general Description:

Dalembert method to solve partial differential equations (wave equation on the real number set – bounded interval- the space). Laplace method to solve the partial differential equations with initial conditions. Fourier method to solve the partial differential equations with initial conditions. Separation variables Method to solve the wave- heat and Laplace equations in polar- spherical and cylindrical coordinates. Super position principle to solve nonhomogeneous partial differential with initial conditions. Green function for partial differential equations. Solutions the nonlinear partial differential equations.

5. Pre-requirements for this course (if any):

None

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

The student will be taught as follows:

- 1. Study Dalembert method to solve partial differential equations
- 2. Study Laplace method to solve the partial differential equations with initial conditions
- 3. Study Fourier method to solve the partial differential equations with initial conditions.
- 4. Study separation variables Method to solve the wave- heat and Laplace equations in polarspherical and cylindrical coordinates
- 5. Study separation variables Method to solve the Laplace equations in polar- spherical and cylindrical coordinates
- 6. Study super position principle to solve non-homogeneous partial differential with initial conditions.
- 7. Study Green function for partial differential equations. Solutions the nonlinear partial differential equations.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	\checkmark	100%
2	E-learning		
	Hybrid		
3	Traditional classroom		
	E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unders	standing		
1.1	<u>Recognize</u> Dalembert method to solve partial differential equations.	K 1	Lectures, group discussion	Exams, Quizzes, Assignments
1.2	DescribeLaplacemethod to solve thepartialdifferentialequationsconditions.	К3	Lectures, group discussion	Exams, Quizzes, Assignments
2.0		Skills		
2.1	ApplySeparationvariablesMethod tosolve the wave- heatand Laplace equationsin polar- spherical andcylindrical coordinates.	S1	Lectures, group discussion	Exams, Quizzes, Assignments, report

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
2.2	DemonstrateGreenfunctionforpartialdifferentialequations.Solutions the nonlinearpartialdifferentialequations.	S5	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.0		Values, autonomy, and	responsibility	
3.1	Participate effectively within groups and independently.	V 1	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.2	Give responsibility for learning importance and continuing personal and professional development.	V2	Lectures, group discussion	Exams, Quizzes, Assignments, report

C. Course Content:

No	List of Topics	Contact Hours
1.	Dalembert method to solve partial differential equations	9
2.	Laplace method to solve the partial differential equations with initial conditions.	9
3.	Fourier method to solve the partial differential equations with initial conditions	9
4.	Separation variables Method to solve the wave- heat and Laplace equations in polar- spherical and cylindrical coordinates.	6
5.	Super position principle to solve non-homogeneous partial differential with initial conditions.	6
6.	Green function for partial differential equations. Solutions the nonlinear partial differential equations.	6
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes and HomeWorks	Continues	10 %
2.	Midterm exam	8 th -9 th	20 %
3.	Final exam	16 th	70%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	Introduction to Partial Differential Equations. ISBN-13: 978-0691043616 ISBN-10: 0691043612
Supportive References	Partial Differential Equations: Second Edition ISBN-13: 978-0821849743 ISBN-10: 0821849743
Electronic Materials	https://www.amazon.com/Partial-Differential-Equations- Graduate-Mathematics/dp/0821849743
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources	
facilities		
(Classrooms, laboratories, exhibition rooms,	Classrooms	
simulation rooms, etc.)		
Technology equipment	Data show, Blackboard, Maple and MATLAB	
(Projector, smart board, software)	software	
Other equipment		
(Depending on the nature of the specialty)	Wi-Fi internet connections	

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of students assessment	Students	Indirect
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Peer reviewer	Direct
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE

Department of Mathematics and Statistics

REFERENCE NO. 20/10/2023 Date Image: Second Statistics Mathematics and Statistics Department Image: Second Statistic Second Statis Second Statistic Second Statistic Second

