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A B S T R A C T

Backgrounds: Substituting nebulisers by another, especially in non-invasive ventilation (NIV), involves many
process-variables, e.g. nebulizer-type and fill-volume of respirable-dose, which might affect patient optimum-
therapy. The aim of the present work was to use neural-networks and genetic-algorithms to develop perfor-
mance-models for two different nebulizers.
Methods: In-vitro, ex-vivo and in-vivo models were developed using input-variables including nebulizer-type [jet
nebulizer (JN) and vibrating mesh nebulizer (VMN)] fill-volumes of respirable dose placed in the nebulization
chamber with an output-variable e.g. average amount reaching NIV patient. Produced models were tested and
validated to ensure effective predictivity and validity in further optimization of nebulization process.
Results: Data-mining produced models showed excellent training, testing and validation correlation-coefficients.
VMN showed high nebulization efficacy than JN. JN was affected more by increasing the fill-volume. The op-
timization process and contour-lines obtained for in-vivo model showed increase in pulmonary-bioavailability
and systemic-absorption with VMN and 2mL fill-volumes.
Conclusions: Modeling of aerosol-delivery by JN and VMN using different fill-volumes in NIV circuit was suc-
cessful in demonstrating the effect of different variable on dose-delivery to NIV patient. Artificial neural net-
works model showed that VMN increased pulmonary-bioavailability and systemic-absorption compared to JN.
VMN was less affected by fill-volume change compared to JN which should be diluted to increase delivery.

1. Introduction

Modeling and optimization of multivariate and complex domains
require use of sophisticated mathematical and statistical models and the
results are not always easy to interpret. Artificial neural networks
(ANNs) belong to data mining technology and are considered a pow-
erful tool to model and optimize these kinds of data with fast and easy
interpretation of the results. In many studies previously performed in
the field of pharmaceutical development, data mining technology in the
form of artificial neural networks and neurofuzzy logic were success-
fully applied for modeling, optimization and prediction of formulation
and/or in-vitro/in-vivo performance of various dosage forms and

medical devices [1–3]. It is well known that ANNs superseded con-
ventional mathematical and statistical modeling methodologies, for
their ability to model non-linear data and unnecessary establishment of
equations to describe relationship between input and output variables
[4]. In addition to the above advantages, ANNs can be used for eva-
luation of historical data and new models can be updated with added
new experiments [5]. In similar studies, ANNs were also applied for
building predictive models to evaluate the relationship between in-vitro
aerosol characteristics and pulmonary bioavailability of inhaled drugs
[6,7].

In our previously published work, data mining was employed in
many area related to drug delivery e.g. dry powder inhaler delivery [8];
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different formulation preparation and optimization [9,10] and they
proved to be an effective tool. We extend the use of such a methodology
to optimize metered dose inhaler (MDI) delivery with spacers [2] and
vibrating mesh nebulizers delivery [1] in non-invasive ventilation (NIV)
and again they proved to be an effective and good tool. The modeling
study of the VMNs recommended inclusion of other variables in the NIV
circuit to optimize the model e.g. nebulizer type and fill volume of the

respirable solution.
Hence, this study aimed to evaluate the effects of nebulizer type, fill

volume of the respirable solution, placed in the nebulization chamber,
on effective drug delivery. The modeling and optimization was carried
out using ANNs and neurofuzzy logic based data mining technology.

2. Materials and methods

2.1. Experimental method

Study consisted of three models (in-vitro, ex-vivo and in-vivo) using
two type of nebulizers, vibrating mesh nebulizer (VMN, Aerogen Solo,
Aerogen Limited, Ireland) and the Oxycare jet nebulizer (JN, Ceren
Uretim A.S., Istanbol, Turkey) attached to a compressor (PortaNeb,
Philips Respironics, UK) set at 6 L/min. The three parts of study was

Fig. 1. Schematic design of the nebulizers positions within the non-invasive ventilation circuit. (A) In-vitro setting to determine the fate of the aerosolized dose. (B) In
vivo and ex-vivo setting. The inspiratory filter was placed between the patient and nebulizer in the ex-vivo part of the study only.

Table 1
Mean (SD) demographic data of the 4 groups.

Age (Years) Wight (kg) Height (cm)

Group 1 62.3 (6.0) 70.7 (7.9) 173 (4.7)
Group 2 65.0 (5.3) 74.4 (8.5) 170.6 (7.2)
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conducted in dry non-humidified ventilation circuit. Placing the nebu-
lizer near the subject between the face-mask and the expiration port
was previously shown to produce a greater aerosol delivery with less
aerosol loss through the expiration port [11,12]. Therefore, we placed
both nebulizers in the above-mentioned position.

The schematic design of the in-vitro bench model setting and
nebulizers positions within the non-invasive ventilation circuit are
presented in Fig. 1 A. For in-vitro model JN and VMN filled with 3
different volumes (1, 2 and 4mL, with normal saline as diluent) con-
taining 5000 μg salbutamol respirable solution (Farcolin respirator so-
lution, 5000 μgml−1; Pharco Pharmaceuticals, Egypt), nebulizers were
attached to its T-piece which was attached from one side to mechanical
ventilator (Nippy2, B&D Electromedical, UK), set in spontaneous mode
with a peak inspiratory pressure (PIP) 20 cmH2O and a peak expiratory
pressure (PEP) 5 cmH2O, and a 180 cm single limb NIV circuit con-
nected to a breathing simulator (5600i, Michigan Instruments, Ger-
many) from the other side, with inhalation to exhalation ratio 1:3, 15
breaths per minute, tidal volume 500mL. An inhalation filter (Pari
GmbH, Germany) was placed before breathing simulator to collect
amount of drug that would be delivered to patient lung, also an ex-
halation filter placed 4 cm from expiratory port for collection of expired
amount of drug.

Each fill volume was tested 10 times (n= 10). Amount of salbu-
tamol was collected from inhalation, exhalation filters, T-piece and
nebulizer chamber. Amount of salbutamol quantified using high per-
formance liquid chromatography (HPLC) [1].

The schematic design of the in-vivo and ex-vivo model setting and
nebulizers positions within the non-invasive ventilation circuit are
presented in Fig. 1 B. The study was conducted in accordance with
amended Declaration of Helsinki. Local institutional review boards and
independent ethics committees approved protocol, and written in-
formed consent was obtained from all patients. Subjects were ineligible
to be included in this study if they had taken part in research study
during previous 6 months, had known hypersensitivity to salbutamol,
systolic blood pressure of< 100mmHg or severe renal impairment
defined as Creatinine Clearance or eGFR of< 20 mlmin−1.

For in-vivo model a 24 (12 females) NIV patients were included in
the study and divided to two groups (12 each). For each group, one
nebulizer of the two nebulizers studied was used with two fill volumes
(1 and 2mL, with normal saline as diluent) containing 5000 μg salbu-
tamol respirable solution in days one and three of the study. Urine
samples were collected 30min (as an index of lungs deposition) after
nebulization and urine pooled for next 24hr (as an index of systemic
absorption) [13].

Ex-vivo study was carried out in day two, using the same experi-
mental setting with, by placing an inhalation filter before face mask for
collection of salbutamol before reaching patient lung. All in-vivo and
ex-vivo samples were analyzed using HPLC [1].

Table 2
Fate of emitted dose across compartment in μg (SD) with total fill volumes of 1, 2 and 4mL with vibrating mesh nebulizer (VMN) and jet nebulizer (JN); n= 10.

Mean (SD) VMN JN

1mL 2mL 4mL 1mL 2mL 4mL

Inhalation filter 1691.1 (266.3) 1922.9 (207.4) 1946.0 (157.7) 685.2 (381.8) 1095.8 (166.9) 1338.8 (42.1)
Exhalation filter (fugitive aerosol) 2175.4(342.6) 2473.5(266.8) 2503.4(202.9) 881.5(491.2) 1409.6(214.6) 1722.2(54.2)
T-piece and ventilator tubing 314.7(100.4) 665.5(332.4) 862.3(147.2) 523.3(259.0) 564.3(444.8) 686.4(348.4)
Nebulization chamber 529.0(352.4) 257.2(76.9) 252.5(128.4) 2927.9(887.7) 2259.1(348.1) 1630.1(243.1)
Nebulization time 2.33 (0.07) 4.29 (0.07) 9.61 (0.30) 4.55 (0.30) 13.55 (0.30) 20.67 (5.87)

Table 3
Mean (SD) USAL0.5, USAL24 and TID in μg and nebulization times in minute using different fill volume.

Nebulizer type Fill volume USAL 0.5 (μg) USAL 24 (μg) Ex-vivo (μg) Time (minute)

JN 1ml 28.3(7.6) 146.3(42.3) 792.9(130.7) 3.42(0.08)
2ml 47.9(10.6) 429.5(106.9) 1395(152.2) 6.86(0.42)

VMN 1ml 107.9(28) 542.1(88.4) 1480.9(116.5) 2.29(0.08)
2ml 134.6(44.7) 599.6(60.9) 1690.8(156.0) 4.22(0.7)

Table 4
Sample of modelling input and output variables for the in-vitro model.

Run Nebulizer type Fill
volume
(mL)

Inhal.
filter
(μg)

Exhal.
filter
(μg)

Tubing Amount in
nebulizer
(μg)

1 0.1 1.0 1345.55 1730.90 379.99 611.50
2 0.1 1.0 1443.69 1857.15 214.34 1051.25
3 0.1 1.0 1402.89 1804.66 313.41 981.18
4 0.1 1.0 1569.59 2019.10 224.22 960.11
a5… 0.1 1.0 1762.46 2267.22 142.17 467.75
1 0.2 1.0 347.39 446.88 749.18 1968.56
2 0.2 1.0 337.63 434.32 614.81 1467.17
3 0.2 1.0 683.10 878.73 773.24 1569.84
4 0.2 1.0 576.02 740.99 817.26 3412.54
5… 0.2 1.0 501.41 645.01 759.11 3604.50
1 0.1 2.0 1646.24 2117.71 1206.21 419.77
2 0.1 2.0 1443.70 1857.16 1117.56 337.71
3 0.1 2.0 2081.70 2677.88 703.20 195.64
4 0.1 2.0 2008.73 2584.01 473.34 263.63
a5... 0.1 2.0 2029.16 2610.29 895.01 295.80

a The number of records is continuous to 10 runs for each type of nebulizer
and fill volume.

Table 5
Sample of modeling input and output variables for the Ex-vivo model.

Patient Nebulizer type Fill volume (mL) Inhalation filter (μg) Ex-vivo (μg)

1 0.1 1.0 1691.08 1454.32
2 0.1 1.0 1691.08 1553.44
3 0.1 1.0 1691.08 1450.44
4 0.1 1.0 1691.08 1668.10
*5.. 0.1 1.0 1691.08 1459.97
1 0.1 2.0 1922.86 1698.50
2 0.1 2.0 1922.86 1695.62
3 0.1 2.0 1922.86 1637.25
4 0.1 2.0 1922.86 1763.99
5.. 0.1 2.0 1922.86 1798.69
1 0.2 1.0 685.21 586.90
2 0.2 1.0 685.21 893.81
3 0.2 1.0 685.21 699.81
4 0.2 1.0 685.21 866.72
5.. 0.2 1.0 685.21 706.10
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2.2. Modeling of the data using artificial neural networks

In this study modeling and optimization of the in-vitro, ex-vivo and
in-vivo data were undertaken using artificial neural networks (ANNs)-
Genetic algorithm software package (INForm V3.71, Intelligensys Ltd.,
UK) [14]. The experimentally collected data set for each model (in-
vitro, ex-vivo and in-vivo) was divided into training records (80%),
testing records (10%) and validation records (10%) for model training
testing and validation, respectively. Model success in predictability was
evaluated using the correlation coefficient (R2) values computed auto-
matically during training and testing as well as validation steps. High
R2 values closer to unity indicate appropriate predictability of the
trained model and confirm its trustability [10].

The value of R2 describes how much of the variance of the

dependent variable is accounted for in the model. The root mean
squared errors (RMSE) were also calculated and compared for model
training, testing and validation. The relationship between each of the
independent variables (inputs) and each of the dependent ones (out-
puts) were explained by 3D response surface plots [15]. The in-vitro
performance of the nebulizers was modeled using 60 data records. The
input variables included; nebulizer type, run number (1–10), drug re-
spirable solution fill volume (1, 2 or 4mL). The output properties in-
cluded; dose collected on the inhalation filter (Inhal-fiter in μg), the
exhalation filter (Exhal-filter in μg), dose precipitated in Tubing (μg)
and dose remained inside the nebulization chamber (μg). Each nebu-
lizer was given a numeric code to be included in the modeling and
differentiate the two types as follows; VMN (0.1) and JN (0.2).

For ex-vivo evaluation of the nebulizers, the amount of salbutamol
collected on the filter before reaching the face mask of the patients (ex-
vivo) was modeled as the output property. The input variables in-
cluded; patient number, nebulizer type and average collected emitted
dose from the nebulizer on the inhalation filter (Inhal-filter). The ex-
vivo study for patients (n=24) using two nebulizers and 2 fill volumes
(1 and 2mL) reached 48 records. The same codes 0.1 and 0.2 were
given to the VMN and JN, respectively, as mentioned above.

Modeling of the in-vivo study also included 48 records with similar
inputs used for the ex-vivo study and the outputs being amount of drug
collected in urine after 0.5 h (D/Urine 30min) as an index of pulmonary
bioavailability and after 24hr (D/Urine 24hr) as an index of systemic
absorption [13].

2.3. Model optimization

The performance of the nebulizers in the three models (in-vitro, ex-
vivo and in-vivo) was optimized using the software model optimization
window after setting the desired values for each property and the model
optimization function as “Tent”.

Table 6
Sample of modeling input and output variables for the in-vivo model.

Patient Nebulizer type Fill volume Inhalation
filter

D/urine
30min

D/urine
24 h

1 0.1 1.0 1691.08 88.55 427.16
2 0.1 1.0 1691.08 108.67 597.08
3 0.1 1.0 1691.08 153.99 431.16
4 0.1 1.0 1691.08 91.54 511.85
*5.. 0.1 1.0 1691.08 96.68 487.87
1 0.1 2.0 1922.86 105.25 672.38
2 0.1 2.0 1922.86 120.13 703.29
3 0.1 2.0 1922.86 131.89 572.63
4 0.1 2.0 1922.86 211.62 646.24
5.. 0.1 2.0 1922.86 85.09 566.19
1 0.2 1.0 685.21 18.73 120.78
2 0.2 1.0 685.21 36.17 114.26
3 0.2 1.0 685.21 28.61 84.94
4 0.2 1.0 685.21 28.12 227.64
5.. 0.2 1.0 685.21 24.12 104.32

Table 7
In-vitro model training and testing ANOVA statistics for each output property.

Output property Source of Variation Sum of Squares Degrees of Freedom Mean Squares aRMSE Computed f ratio

Inhalation Filter (μg) Model 12914800.00 21.00 614991.00 784.21 19.79
Error 1025490.00 33.00 31075.30 176.28
Total 13928400.00 54.00
Covariance term Sum of Errors
11887.90 2.15
Train Set R2 92.64%
Test Set R2 94.36%

Exhalation-Filter (μg) Model 21357500.00 21.00 1017030.00 1008.48 19.84
Error 1691890.00 33.00 51269.30 226.43
Total 23048800.00 54.00
Covariance term Sum of Errors
654.24 4.20
Train Set R2 92.66%
Test Set R2 94.54%

Tubing (μg) Model 4247470.00 21.00 202261.00 449.73 3.97
Error 1682380.00 33.00 50981.10 225.79
Total 5930000.00 54.00
Covariance term Sum of Errors
148.109 2.59632
Train Set R2 71.63%
Test Set R2 32.11%

Nebulizer (μg) Model 64395400.00 21.00 3066450.00 1751.13 42.32
Error 2391150.00 33.00 72459.10 269.18
Total 66764300.00 54.00
Covariance term Sum of Errors
22195.5 0.99
Train Set R2 96.42%
Test Set R2 94.77%

a RMSE: Root mean squared error.
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3. Results and discussions

The design and performance of the inhalation device should be
evaluated based on its ability to systematically deliver uniform doses
and maximize the inhaled drug bioavailability [16]. Nebulizers are
widely used devices for aerosol deliver during NIV [17]. Low efficacy of
nebulized aerosol delivery during NIV is still an obstacle to researcher
and healthcare members [18]. This problem is fundamentally about the
delivery of low percent of nebulized drugs to patient lungs (5–10%)
[1,11,19–22]. There are many factors contributing to this problem e.g.
type of aerosol generating device, fill volume, humidification condi-
tions and others [23–28]. There are three main types of nebulizers

differ basically in their operation and droplet generation mechanisms
(JN, VMN, ultrasonic). They differ in their delivery efficacy [24,26,29]
and so they cannot substitute each other without dose adjustment
[19,21,30–34]. Such substitution was proven to result in significant
change in the clinical response [35]. Here we tried to build models that
can be used to optimize substitution and adjust the fill volume of re-
spirable solution used.

3.1. Modeling of in-vitro, ex-vivo and in-vivo data

The mean (SD) demographic data of the 2 groups are presented in
Table 1. Table 2 shows the fate of emitted dose across ventilation circuit

Table 8
Model training and testing ANOVA statistics for the ex-vivo and in-vivo models.

Output property Source of Variation Sum of Squares Degrees of Freedom Mean Squares aRMSE Computed f ratio

Ex-vivo (μg) Model 5101260.00 19.00 268487.00 518.16 14.63
Error 440470.00 24.00 18352.90 135.47
Total 5651250.00 43.00
Covariance term Sum of Errors
109523 32.76
Train Set R2 92.21%
Test Set R2 77.25%

Drug in urine/30min (μg) Model 88247.10 19.00 4644.58 68.15 4.18
Error 26697.50 24.00 1112.40 33.35
Total 115000.00 43.00
Covariance term Sum of Errors
55.13 0.26
Train Set R2 76.78%
Test Set R2 95.76%

Drug in urine/24hr (μg) Model 1471090.00 19 77426 278.26 10.34
Error 179655 24 7485.62 86.52
Total 1651230.00 43
Covariance term Sum of Errors
482.72 0.97
Train Set R2 89.12%
Test Set R2 77.70%

a RMSE: Root mean squared error.

Table 9
Model validation ANOVA statistics for the in-vitro performance of the nebulizers.

Output property Source of Variation Sum of Squares Degrees of Freedom Mean Squares *RMSE Computed f ratio

Inhalation Filter (μg) Model 1011050.00 21.00 48145.20 219.42 7.36
Error 111182.00 17.00 6540.11 80.87
Total 1503560.00 4.00
Covariance term Sum of Errors
381332.00 255.83
Validation R2 92.61%

Exhalation-Filter (μg) Model 1671010.00 21.00 79572.00 282.09 7.13
Error 189696.00 17.00 11158.60 105.63
Total 2488100.00 4.00
Covariance term Sum of Errors
627394.00 328.78
Validation R2 92.38%

Tubing (μg) Model 68021.50 21.00 3239.12 56.91 8.18
Error 6733.80 17.00 396.11 19.90
Total 67818.60 4.00
Covariance term Sum of Errors
6936.68 4.8013
Validation R2 90.07%

Nebulizer (μg) Model 8356350.00 21.00 397922.00 630.81 91.45
Error 73972.70 17.00 4351.34 65.96
Total 8245600.00 4.00
Covariance term Sum of Errors
184729.00 194.21
Validation R2 99.10%
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compartment in μg (SD) in the in-vitro study. Mean (SD) 30min urine
(USAL0.5) and pooled urine up to 24 h (USAL24) from the in-vivo study
and the amount salbutamol deposited on the inhalation filter in the ex-
vivo study (TID) are shown in Table 3.

The input and output variables for the in-vitro, ex-vivo and in-vivo

data are summarized in Tables 4–6. The modeling process carried out
using in-vitro data showed highly predictive model as indicated by its
excellent ANOVA statistics including; high training and testing R2

(> 90%) and F values as shown in Table 7. The only exception is the
model obtained for predicting amount of drug remaining in the T-tubes

Table 10
Model Validation ANOVA statistics for the ex-vivo and in-vivo models.

Output property Source of Variation Sum of Squares Degrees of Freedom Mean Squares *RMSE Computed f ratio

Ex-vivo (μg) Model 511450 13 39342.30 198.35 3.31
Error 118691 10 11869.10 108.95
Total 447603 3
Covariance term Sum of Errors
182538.00 70.65
Validation R2 73.48%

Drug in urine/30min (μg) Model 6306.13 13 485.09 22.02 9.85
Error 492.488 10 49.25 7.02
Total 4835.59 3
Covariance term Sum of Errors
1963.03 34.36
Validation R2 89.82%

Drug in urine/24hr (μg) Model 126860 13 9758.42 98.78 7.36
Error 13255.6 10 −1325.56 36.41
Total 188003 3
Covariance term Sum of Errors
47887.60 17.64
Validation R2 92.95%

Fig. 2. Response surface plots showing effects of nebulizer type and fill volume on (A) amount of drug collected on the inhalation filter, (B) exhalation filter, (C)
tubing and (D) remaining inside nebulizer chamber.

H. Saeed et al. Pulmonary Pharmacology & Therapeutics 50 (2018) 62–71

67



(tubing) which showed a reasonable training R2 but poor testing R2

values due to limited scatter of the data. However, in general the ob-
tained results were comparable to the good predictive models men-
tioned in our previous work and the literature in which, high R2 values
represent the high efficiency of the models to account for variability in
the data [1,2]. The root mean squared errors (RMSE) values were also
found to decrease from training to testing indicating that the obtained
in-vitro models are trustworthy with low variability in predictions
[1,2].

The model generated for the ex-vivo data (Table 8) also demon-
strated good training and testing R2 (92.21% for training and 77.25%
for testing) and F values (14.63) indicated a well trusted model.

For the in-vivo models, D/Urine 30min showed good training R2

(76.78%) and low RMSE values for model training and testing (68.15
and 33.35 respectively). D/Urine 24 h model demonstrated 89.12% R2

and 278.26 and 86.52 RMSE values for model training and testing re-
spectively as shown in Table 8 indicating better prediction capability of
the second model.

The ex-vivo and the in-vivo models were much better than our
previous models in NIV for MDI with different spacer [2] and different
vibrating mesh nebulizers [1] since more variables are used here (dif-
ferent nebulizers and different fill volumes).

Models validation was carried out to check the ability of the gen-
erated models to predict unseen data (10% of the records). The results
of validation for each of the three models demonstrated high R2 and F
values and low RMSE values, indicating validity and trustability of the
models (Tables 9 and 10). These results also strongly support further
use of the models in the optimization of the output properties to get the
desired optimum in-vitro, ex-vivo and in-vivo attributes of the neb-
ulization process through model suggested ideal values of nebulizers'
variables [36]. However, even though the models here advise that the
in-vitro bench model testing could really reproduce what would happen
when NIV patient receive nebulized aerosol, the in-vitro, ex-vivo and
in-vivo testing resulted in a bit different models. This would be due to
the additional variables introduced in the ex-vivo and the in-vivo
testing e.g. the variability in the patients' inhalation and exhalation
profiles which was much higher than the breathing simulator [1,2,6,8].
Hence, introduction of actual patients' inhalation and exhalation pro-
files in the in-vitro testing methodology is required to decrease these
variables [33,37].

3.2. Response surface plots and contour lines

The explanation of the cause-effect relationship between input and
output variable are demonstrated by the response surface plots. The
plots display the interaction between two variables on the output
property at average levels of the third input variable.

The 3D plots obtained for the in-vitro model indicated that the amount
of drug collected on the inhalation and exhalation filter were increased by
increasing the nebulizer fill volume with both nebulizers but nebulizer en-
coded 0.1 (VMN) showing higher values at the same fill volume while level
of increase of emitted drug detected for encoded 0.2 (JN) was higher than
VMN as shown in Fig. 2A and B. This suggests that the fill volume change
affect the JN more than the VMN. Hence, when using JN, it is better to
dilute the respirable solution to deliver more drugs [24,38]. This re-
commendation is not valid for VMNwhich had a very low level of change in
delivery with changing fill volume due to its low residual volume [24].

For the amount in tubing the fill volume 1mL was better (minimum
amount) for nebulizer 0.1 (VMN). It increased with 2 and 4mL for
nebulizer 0.1 (VMN) (Fig. 2 C). This could be because increasing the fill
volume increased the nebulization time of the VMN which in turn in-
creased time for aerosol to pounce and condensate on the tubing [24].
This was not seen in JN since its T-tubing was above the JN nebuliza-
tion chamber so any aerosol condensates would return to the neb-
ulization chamber to be renebulized [24].

The amount remaining in nebulizer was inversely proportional to
the fill volume with nebulizer 0.2 (JN) demonstrating higher amounts
than VMN (Fig. 2 D). Again this was due to the large residual volume of
the JN making any dilution of the respirable solution affect the re-
maining drug amounts [23–26,33,34].

The ex-vivo and the in-vivo models were similar to in-vitro one but
with low response. Again this would be due to the additional variables
introduced in the ex-vivo and the in-vivo testing e.g. the variability in
the patients' inhalation and exhalation profiles which was much higher
than the breathing simulator [1,2,6,8]. Hence, introduction of actual
patients' inhalation and exhalation profiles in the in-vitro testing
methodology is a must to decrease these variables [33,37].

In the ex-vivo model, the amount of drug collected on the filter
placed before the face mask was affected most by the fill volume, with
2mL showing better value than 1mL, especially with JN, and VMN
being the best, and no interacting effects of the amounts collected on
the inhalation filter was detected (Fig. 3A and B).

Fig. 3. Response surface plots showing effects of nebulizer type and (A) fill volume and (B) Inhalation filter on the amount of drug collected on the face mask.
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The in-vivo model showed that the amount of drug in urine after
30min (D/Urine 30min) was increasing by increasing the fill volume
with both nebulizers. But VMN (0.1) showed higher values than the JN
(0.2) while level of increase of D/Urine 30min for JN was higher than
VMN by increasing the fill volumes shown in Fig. 4A and B.

The generated response surface plots for the D/Urine 24 h demon-
strated that at high fill volumes (2mL) and high amounts of drug on the
inhalation filter, maximum D/Urine 24 h was obtained showing an
obvious difference between the two types of nebulizers in favor of the
VMN (Fig. 4C and D).

In Fig. 5 A the contour lines for the in-vitro model demonstrated
that higher amount of the dose collected in the inhalation filter were
obtained with the VMN between 1 and 2mL fill volumes. In Fig. 5 B, the
ex-vivo collected dose was higher at 2mL fill volume with the VMN.
Similar to the ex-vivo results, the in-vivo model demonstrated high
collected doses in urine after 30min and 24hr from the VMN at 2mL fill
volumes. These results indicate the presence of differences between the
JN and VMN with favor of the VMN which was less affected by the fill
volume changes. The data of the ex-vivo and in-vivo models also

suggest that increasing the fill volume higher than 2mL will bring no
additional value.

3.3. Models' optimization

The optimization process was carried out using the software opti-
mization window in which the desired levels of each output property
were entered together with an optimization function (in this case the
Tent function was used). In the first model (in-vitro performance) the
desired range for the amount of drug collected on the inhalation filter
was set at 1900–2000 μg, 2400–2800 μg for the exhalation filter,
200–300 μg for the tubing and 100–200 for the amount remaining in
the nebulizer. In the second model (ex-vivo performance) the desired
range of outputs included; 1500–1700 μg for the amount collected ex-
vivo on the face mask. The in-vivo model desired range for drug col-
lected in urine after 30min was set at 150–170 μg whilst for the 24hr
samples it was set at 500–700 μg.

The results of optimization for the in-vitro and ex-vivo models
suggested a model proposed solution composed of a nebulizer of the

Fig. 4. Response surface plots showing effects of nebulizer type and (A) fill volume and (B) Inhalation filter on the amount of drug collected in urine after 30min and
after 24hr (C & D).
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VMN type (encoded 0.1) with fill volume 1mL which could achieve
almost all the desired ranges of in-vitro and ex-vivo output properties
set out before optimization (Table 11). The proposed solution for the in-
vivo model also suggested a solution with a nebulizer of the VMN (0.1)
and a fill volume of 2mL in order to achieve the desired D/urine 30min
and D/urine 24hr (Table 11). These results demonstrate that the in-vivo
model was affected by the same variables used with the in-vitro and ex-
vivo models. Other suggested variables that could be used to improve
the in-vivo model may include; patient's variability in inhalation and
exhalation profile, lung capacity as well as the liver and kidney func-
tions. These factors may play major roles in predicting the amount and
fate of the inhaled dose and would be more helpful in modeling and
optimization of an in-vivo data.

4. Conclusions

The modeling of aerosol delivery by JN and VMN using different fill
volumes in NIV circuit was successful in demonstrating the effect of
different variable on dose delivery to NIV patient. The ANNs model
showed that VMN increased the lung deposition and systemic absorp-
tion compared to JN. VMN was less affected by the fill volume change
compared to JN which should be diluted to increase delivery. The in-
vitro results showed better model than the ex-vivo and in-vivo. Thus,

more variables related to patients, e.g. the actual patient respiration
profile, should be introduced in the in-vitro testing methodology to
imitate the true aerosol delivery method in the patient.

5. Location of study

Teaching Hospital of Faculty of Medicine, Faculty of Medicine, Beni-
suef.

University, Beni-suef, Egypt and the Clinical Pharmacy Department,
Faculty of Pharmacy, Beni-suef University, Beni-suef, Egypt (analysis).

R&D Approval for patient study: Beni-suef Teaching Hospitals
Research Ethics Committee approval number: FMBSU REC FWA#:
FWA00015574.
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Ahmed M. A. Ali: modeling, writing.
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Fig. 5. Model generated contour lines for the in-vitro collected dose on (A) the inhalation filter, (B) the Ex-vivo collected dose, the in-vivo collected dose in urine (C)
after 30min and (D) after 24hr.

Table 11
Model optimization results for the best performance of the three models.

In-vitro model Desirability X1 X2 X3 Y1 Y2 Y3 Y4

Run Nebulizer type Fill volume (mL) Inhal. filter (μg) Exhal. Filter (μg) Tubing (μg) Amount/ Nebuliser (μg)

Solution 0.98 7.00 0.10 1.00 1903.12 2449.59 336.39 369.15

Ex-vivo model X1 X2 X3 X4 Y1
Patients Nebulizer type Fill volume Inhalation filter Ex-vivo (μg)

Solution 1.00 8.00 0.10 1.00 1774.30 1506.10

In-vivo model X1 X2 X3 X4 Y1 Y2
Patients Nebulizer type Fill volume Inhalation filter D/urine 30min D/urine 24hr

Solution 1.00 12.00 0.1 2.00 1922.86 159.76 582.35

H. Saeed et al. Pulmonary Pharmacology & Therapeutics 50 (2018) 62–71

70



References

[1] H. Rabea, A.M.A. Ali, R. Salah Eldin, M.M. Abdelrahman, A.S.A. Said,
M.E. Abdelrahim, Modelling of in-vitro and in-vivo performance of aerosol emitted
from different vibrating mesh nebulisers in non-invasive ventilation circuit, Eur J
Pharm Sci 97 (2017) 182–191.

[2] R.R.S. Hussein, A.M.A. Ali, H.F. Salem, M.M. Abdelrahman, A.S.A. Said,
M.E.A. Abdelrahim, In vitro/in vivo correlation and modeling of emitted dose and
lung deposition of inhaled salbutamol from metered dose inhalers with different
types of spacers in noninvasively ventilated patients, Pharm Dev Technol 22 (2017)
871–880.

[3] Y. Sun, Y. Peng, Y. Chen, A.J. Shukla, Application of artificial neural networks in
the design of controlled release drug delivery systems, Adv. Drug Deliv. Rev. 55
(2003) 1201–1215.

[4] Y. Chen, S.S. Thosar, R.A. Forbess, M.S. Kemper, R.L. Rubinovitz, A.J. Shukla,
Prediction of drug content and hardness of intact tablets using artificial neural
network and near-infrared spectroscopy, Drug Dev. Ind. Pharm. 27 (2001)
623–631.

[5] M. de Matas, Q. Shao, V.L. Silkstone, H. Chrystyn, Evaluation of an in vitro in vivo
correlation for nebulizer delivery using artificial neural networks, J. Pharmaceut.
Sci. 96 (2007) 3293–3303.

[6] M. de Matas, Q. Shao, C.H. Richardson, H. Chrystyn, Evaluation of in vitro in vivo
correlations for dry powder inhaler delivery using artificial neural networks, Eur. J.
Pharmaceut. Sci. 33 (2008) 80–90.

[7] T.G. O'Riordan, Optimizing delivery of inhaled corticosteroids: matching drugs with
devices, J. Aerosol Med. 15 (2002) 245–250.

[8] A. Ali, M. Abdelrahim, Modeling and optimization of terbutaline emitted from a dry
powder inhaler and influence on systemic bioavailability using data mining tech-
nology, J Pharm Innov. 9 (2014) 38–47.

[9] A.A. Ali, A.M. Ali, Optimization of propranolol HCl release kinetics from press
coated sustained release tablets, Pharm. Dev. Technol. 18 (2013) 1238–1246.

[10] A.A. Abdelrahman, H.F. Salem, R.A. Khallaf, A.M.A. Ali, Modeling, optimization,
and in vitro corneal permeation of chitosan-lomefloxacin HCl nanosuspension in-
tended for ophthalmic delivery, J. Pharm. Innov. 10 (2015) 254–268.

[11] M.E. Abdelrahim, P. Plant, H. Chrystyn, In-vitro characterisation of the nebulised
dose during non-invasive ventilation, J. Pharm. Pharmacol. 62 (2010) 966–972.

[12] B. Dai, J. Kang, L.-f. Sun, W. Tan, H.-w. Zhao, Influence of exhalation valve and
nebulizer position on albuterol delivery during noninvasive positive pressure ven-
tilation, J. Aerosol Med. Pulm. Drug Deliv. 27 (2014) 125–132.

[13] M. Hindle, H. Chrystyn, Determination of the relative bioavailability of salbutamol
to the lung following inhalation, Br. J. Clin. Pharmacol. 34 (1992) 311–315.

[14] E.M. Maher, A.M.A. Ali, H.F. Salem, A.A. Abdelrahman, In vitro/in vivo evaluation
of an optimized fast dissolving oral film containing olanzapine co-amorphous dis-
persion with selected carboxylic acids, Drug Deliv. 23 (2016) 3088–3100.

[15] J. Bourquin, H. Schmidli, P. van Hoogevest, H. Leuenberger, Advantages of
Artificial Neural Networks (ANNs) as alternative modelling technique for data sets
showing non-linear relationships using data from a galenical study on a solid dosage
form, Eur. J. Pharmaceut. Sci. 7 (1998) 5–16.

[16] P. Barmpalexis, K. Kachrimanis, E. Georgarakis, Solid dispersions in the develop-
ment of a nimodipine floating tablet formulation and optimization by artificial
neural networks and genetic programming, Eur. J. Pharm. Biopharm. 77 (2011)
122–131.

[17] M. Abdelrahim, P. Plant, H. Chrystyn, The relative lung and systemic bioavailability
of terbutaline following nebulisation in non-invasively ventilated patients, Int. J.
Pharm. 420 (2011) 313–318.

[18] R.M. Sarhan, A.A. Elberry, N.S. Abdelwahab, H. Rabea, M.N. Salem,
M.E.A. Abdelrahim, The effect of holding chamber, as add on device for nebulizers,
on aerosol delivery, Respir. Care (2018) (In Press).

[19] M.H.E. ElHansy, M.E. Boules, A.F.M. El-Essawy, M.B. Al-Kholy, M.M. Abdelrahman,
A.S.A. Said, R.R.S. Hussein, M.E.A. Abdelrahim, Inhaled salbutamol dose delivered
by jet nebulizer, vibrating mesh nebulizer and metered dose inhaler with spacer
during invasive mechanical ventilation, Pulm. Pharmacol. Therapeut. 45 (2017)
159–163.

[20] M. Mohsen, A.E. Elberry, A. Salah Eldin, R.R. Hussein, E.M. Abdelrahim, Effects of
heat and humidification on aerosol delivery during auto-CPAP noninvasive

ventilation, Arch. Pulmonol. Respir. Care 3 (2017) 11–15.
[21] A. Hassan, R. Salah Eldin, M.M. Abdelrahman, M.E. Abdelrahim, In-vitro/in-vivo

comparison of inhaled salbutamol dose delivered by jet nebulizer, vibrating mesh
nebulizer and metered dose inhaler with spacer during non-invasive ventilation,
Exp. Lung Res. 43 (2017) 19–28.

[22] M.E. Abdelrahim, K.H. Assi, H. Chrystyn, Relative bioavailability of terbutaline to
the lung following inhalation, using urinary excretion, Br. J. Clin. Pharmacol. 71
(2011) 608–610.

[23] H.S. Harb, A.A. Elberry, H. Rabea, M. Fathy, M.E.A. Abdelrahim, Is Combihaler
usable for aerosol delivery in single limb non-invasive mechanical ventilation? J.
Drug Deliv. Sci. Technol. 40 (2017) 28–34.

[24] H. Saeed, M. Mohsen, J.B. Fink, P. Dailey, A. Salah Eldin, M.M. Abdelrahman,
A.A. Elberry, H. Rabea, R.R.S. Hussein, M.E.A. Abdelrahim, Fill volume, humidifi-
cation and heat effects on aerosol delivery and fugitive emissions during non-
invasive ventilation, J. Drug Deliv. Sci. Technol. 39 (2017) 372–378.

[25] Y.M. Madney, M. Fathy, A.A. Elberry, H. Rabea, M.E.A. Abdelrahim, Nebulizers and
spacers for aerosol delivery through adult nasal cannula at low oxygen flow rate: an
in-vitro study, J. Drug Deliv. Sci. Technol. 39 (2017) 260–265.

[26] H. Saeed, A.A. Elberry, A.S. Eldin, H. Rabea, M.E.A. Abdelrahim, Effect of nebulizer
designs on aerosol delivery during non-invasive mechanical ventilation: a modeling
study of in vitro data, Pulm Ther 3 (2017) 233–241.

[27] R.D. Restrepo, B.K. Walsh, Humidification during invasive and noninvasive me-
chanical ventilation: 2012, Respir. Care 57 (2012) 782–788.

[28] A. Ari, O.T. Atalay, R. Harwood, M.M. Sheard, E.A. Aljamhan, J.B. Fink, Influence
of nebulizer type, position, and bias flow on aerosol drug delivery in simulated
pediatric and adult lung models during mechanical ventilation, Respir. Care 55
(2010) 845–851.

[29] T.C. Carvalho, J.T. McConville, The function and performance of aqueous aerosol
devices for inhalation therapy, J. Pharm. Pharmacol. 68 (2016) 556–578.

[30] I.O.F. Moustafa, M.R.A.-A. Ali, M. Al Hallag, J.B. Fink, P. Dailey, H. Rabea,
M.E.A. Abdelrahim, Lung deposition and systemic bioavailability of different
aerosol devices with and without humidification in mechanically ventilated pa-
tients, Heart & Lung, The J. Acute Critical Care 46 (2017) 464–467.

[31] M.E. Abdelrahim, H. Chrystyn, Aerodynamic characteristics of nebulized terbuta-
line sulphate using the next generation impactor (NGI) and CEN method, J. Aerosol
Med. Pulm. Drug Deliv. 22 (2009) 19–28.

[32] M.E. Abdelrahim, Aerodynamic characteristics of nebulized terbutaline sulphate
using the andersen cascade impactor compared to the next generation impactor,
Pharm. Dev. Technol. 16 (2011) 137–145.

[33] M.H.E. ElHansy, M.E. Boules, H. Farid, H. Chrystyn, S.K. El-Maraghi, M.B. Al-Kholy,
A.F.M. El-Essawy, M.M. Abdelrahman, A.S.A. Said, R.R.S. Hussein, H. Rabea,
M.E.A. Abdelrahim, In vitro aerodynamic characteristics of aerosol delivered from
different inhalation methods in mechanical ventilation, Pharm. Dev. Technol. 22
(2017) 844–849.

[34] A. Hassan, H. Rabea, R.R.S. Hussein, R. Salah Eldin, M.M. Abdelrahman,
A.S.A. Said, H.F. Salem, M.E. Abdelrahim, In-vitro characterization of the aero-
solized dose during non-invasive automatic continuous positive airway pressure
ventilation, Pulm. Ther. 2 (2016) 115–126.

[35] I.O.F. Moustafa, M.H.E. ElHansy, M. Al Hallag, J.B. Fink, P. Dailey, H. Rabea,
M.E.A. Abdelrahim, Clinical outcome associated with the use of different inhalation
method with and without humidification in asthmatic mechanically ventilated
patients, Pulm. Pharmacol. Therapeut. 45 (2017) 40–46.

[36] A.A. Abdelbary, A.M. Al-Mahallawi, M.E. Abdelrahim, A.M. Ali, Preparation, op-
timization, and in vitro simulated inhalation delivery of carvedilol nanoparticles
loaded on a coarse Carrier intended for pulmonary administration, Int. J. Nanomed.
10 (2015) 6339.

[37] H. Chrystyn, G. Safioti, J.R. Keegstra, G. Gopalan, Effect of inhalation profile and
throat geometry on predicted lung deposition of budesonide and formoterol (BF) in
COPD: an in-vitro comparison of Spiromax with Turbuhaler, Int. J. Pharm. 491
(2015) 268–276.

[38] H. Saeed, M. Mohsen, A. Salah Eldin, A.A. Elberry, N.S. Abdelwahab,
R.R.S. Hussein, H. Rabea, M.E.A. Abdelrahim, Effects of fill volume and humidifi-
cation on aerosol delivery during single limb non-invasive ventilation, Respir. Care
(2018) (In Press).

H. Saeed et al. Pulmonary Pharmacology & Therapeutics 50 (2018) 62–71

71

http://refhub.elsevier.com/S1094-5539(18)30041-5/sref1
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref1
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref1
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref1
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref2
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref2
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref2
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref2
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref2
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref3
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref3
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref3
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref4
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref4
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref4
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref4
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref5
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref5
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref5
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref6
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref6
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref6
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref7
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref7
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref8
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref8
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref8
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref9
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref9
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref10
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref10
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref10
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref11
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref11
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref12
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref12
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref12
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref13
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref13
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref14
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref14
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref14
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref15
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref15
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref15
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref15
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref16
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref16
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref16
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref16
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref17
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref17
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref17
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref18
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref18
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref18
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref19
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref19
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref19
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref19
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref19
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref20
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref20
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref20
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref21
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref21
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref21
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref21
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref22
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref22
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref22
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref23
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref23
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref23
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref24
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref24
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref24
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref24
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref25
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref25
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref25
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref26
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref26
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref26
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref27
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref27
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref28
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref28
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref28
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref28
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref29
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref29
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref30
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref30
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref30
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref30
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref31
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref31
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref31
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref32
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref32
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref32
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref33
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref33
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref33
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref33
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref33
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref34
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref34
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref34
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref34
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref35
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref35
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref35
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref35
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref36
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref36
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref36
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref36
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref37
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref37
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref37
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref37
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref38
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref38
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref38
http://refhub.elsevier.com/S1094-5539(18)30041-5/sref38

	Modeling and optimization of nebulizers' performance in non-invasive ventilation using different fill volumes: Comparative study between vibrating mesh and jet nebulizers
	Introduction
	Materials and methods
	Experimental method
	Modeling of the data using artificial neural networks
	Model optimization

	Results and discussions
	Modeling of in-vitro, ex-vivo and in-vivo data
	Response surface plots and contour lines
	Models' optimization

	Conclusions
	Location of study
	Role of authors
	References




