

Course Specifications

Course Title:	Molecular Spectroscopy
Course Code:	2044205-2
Program:	Bachelor in Chemistry
Department:	Department of Chemistry
College:	College of Sciences
Institution:	Taif University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	
D. Teaching and Assessment	4
 Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
1.Learning Resources 2. Facilities Required	5
G. Course Quality Evaluation H. Specification Approval Data	6
H. Specification Approval Data	6
chonistic -	

A. Course Identification

1. Credit hours: 2 (Theoretical)	
2. Course type	
a. University College Department $$ Others	
b. Required Elective $$	
3. Level/year at which this course is offered: 8 th Level / 4 th Year	
4. Pre-requisites for this course (if any): NA	
5. Co-requisites for this course (if any): NA	

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	2 Theoretical hours/ Week	100 %
2	Blended	-	-
3	E-learning	-	-
4	Distance learning	-	-
5	Other	-	-

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	30
2	Laboratory/Studio	-
3	Tutorial	-
4	Others (specify)	-
	Total	30

B. Course Objectives and Learning Outcomes

1. Course Description

The purpose of this course is to provide an advanced overview of molecular spectroscopy. Specifically, the underlying principles of spectroscopy using quantum mechanics, where the interaction of light and matter, and group theory as starting points. The focus of this course is the various forms of optical spectroscopy, including rotational, vibrational and electronic spectroscopy, as well as a brief look at photoelectron spectroscopy and lasers.

2. Course Main Objective

Describe the basic concepts of all electromagnetic radiations, laws of light and its applications in real life and chemistry problem.

3. Course Learning Outcomes

	Aligned PLOs	
1	Knowledge and Understanding:	
1.1	Recall Basic definitions and terminology in spectroscopy	K1
1.2	Recognize the relationship and interactions among the molecular spectroscopy and the environment	K3
2	Skills:	

CLOs	Aligned PLOs
Explain phenomena, concepts, principles and associated applications related to different subjects of the course	S 1
Values:	
Participate in the development of the performance of work teams	V1
	Explain phenomena, concepts, principles and associated applications related to different subjects of the course Values:

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to spectroscopy A historical overview of light and electromagnetic spectrum	2
2	The photon - Quantization of energy and energy level	2
3	Quantitative Spectroscopy Beer-Lambert law, Absorbance and Transmittance, Absorption laws and the nature of radiant energy	4
4	Molecular orbital theory.	4
5	Electronic Spectroscopy Types of electronic transitions	4
6	The relation between the colour and molecular structure in organic compounds	2
7	Calculations of the maximum wave length (λ_{max}) of dienes and α , β -unsaturated carbonyls	4
8	Vibrational Spectroscopy: FT-IR absorption spectroscopy. Types of vibrations in molecules (stretching, bending, etc.)	4
9	Vibrational Energies: Vibrational energy levels (Spring model, force constant, effective mass)	2
10	Effect of bond strength on vibrational transitions	2
	Total	30

D. Teaching and Assessment

1.	Alignment	of	Course	Learning	Outcomes	with	Teaching	Strategies	and
As	sessment Me	etho	ds						

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods	
1.0	Knowledge and Understanding			
1.1	Recall Basic definitions and terminology in spectroscopy.	Lecture	Written exam	
1.2	Recognize the relationship and interactions among the molecular spectroscopy and the environment.	Lecture	Written exam	
2.0	Skills			
2.1	Explain phenomena, concepts, principles and associated applications related to different subjects of the course.	Discussion	Homework assignments	
3.0	Values			
3.1	Participate in the development of the performance of work teams	Collaborative Learning	Individual presentations	

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Homework Assignments (Electronic)	Throughout Semester	15%
2	Individual presentations	Throughout Semester	5%
3	Periodical Exam	7/8	15%
4	Mid Term Exam	11/12	15%
5	Final exam	16	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Commitment to the rules of the Academic Advising Department at the university in accordance with the academic guidance manual approved by the university and the attached forms, there are different arrangements made by teaching staff to support student consultations including;

- Office hours: 8 hours per a week for each academic member.

- Academic guidance: an academic member has a number of students to guide them throughout degree journey.

F. Learning Resources and Facilities

1. Learning Resources

8	
Required Textbooks	 Fundamentals of Molecular Spectroscopy, C.N. Banwell (1983), McGraw-Hill, London, Latest Edition. ISBN: 0-07-084139-X. Fundamentals of Molecular Spectroscopy, Walter S. Struve (1989), New York, Chichester, Latest Edition. ISBN:978- 0471854241.
Essential References Materials	 <u>Elements of Physical Chemistry</u>, Atkins & de Paula, Latest Edition. Chapter 19 & 20, ISBN: 978-1429218139. <u>Foundations of Spectroscopy</u>, Duckett & Gilbert, Latest Edition, Chapter 2-3-4. ISBN: 978-0198503354.
Electronic Materials	 Basic UV-Vis Theory, Concepts and Applications. Rotation and Vibration of Diatomic Molecules
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	• Lecture rooms with max 60 seats (some equipped with data show facility).
Technology Resources (AV, data show, Smart Board, software, etc.)	Data show, smart board, Blackboard access.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching and assessment	Students	Survey (indirect method)
Extent of achievement of course learning outcomes	Program leader	Reports (Direct method)
Quality of learning resources	Peer referees Students	Reports (Direct method) Survey (indirect method)

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	Department Council/ Quality assurance committee	
Reference No.	7-3-1445	
Date	27/2/1445 HJ 12/09/2023 G	