

Course Title: Optimization theory

Course Code: 2024111-3

Program: Bachelor in Mathematics

Department: Mathematics and Statistics Department

College: Faculty of Sciences

Institution: Taif University

Version: 1

Last Revision Date: 20/05/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: 3 (3,0,0) 2. Course type A. □University □College □Department □ Track □Others B. □ Required □ Elective 3. Level/year at which this course is offered: Level 7 / Third Year

4. Course general Description:

This course introduces students to the fundamentals of linear and nonlinear optimization theory and methods. Topics include unconstrained and constrained optimization, The course is divided into five main parts: linear programming (simplex method, duality theory, stativity analysis), unconstrained nonlinear programming (optimality conditions, descent algorithms and convergence theorems), constrained nonlinear programming (Lagrange multipliers, Karush-Kuhn-Tucker conditions,), Dynamic programming and an Integer programming. Students will also use MATLAB's optimization toolbox to obtain practical experience with the material.

5. Pre-requirements for this course (if any):

2022201-4 (Ordinary Differential Equations) 2022204-3 (Linear Algebra)

6. Co-requirements for this course (if any):

None

7. Course Main Objective(s):

- Introducing the concepts and importance of optimality theory.
- Describing basic optimization models and methods for optimality theory.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3Hr /Week	100%
2	E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understandi	ing		
1.1	Recognize the existence and uniqueness of solutions to a given optimization problem.	K1	LecturesGroup discussions `	QuizzesAssignments
1.2	Memorize the rate of convergence and complexity requirements of various optimization algorithms.	K1	LecturesGroup discussions	ExamsAssignments
2.0		S	kills	
2.1	Use various electronic resources, analytical and mathematical techniques for data analysis and problem solving.	S 3	Interactive classesGroup discussions	 Quizzes Assignments
2.2	Design optimization algorithms on a computer	S4	LecturesGroup discussions	ExamsQuizzes
2.3	Develop performance of different optimization models and methods from both theoretical and numerical perspectives.	S4	 Lectures Self-learning through the website 	ExamsQuizzesAssignments
3.0	Va	alues, autonomy	y, and responsibility	
3.1	Work effectively within groups and independently.	V1	Interactive classesGive students tasks of duties	 Assessment of design projects that have elements of
-	**			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
				interpersonal skills
3.2	Articulate ethical behavior associated with institutional Guidelines in classroom, and in Lab.	V3	LecturesGroup discussions	ExamsQuizzes

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction to modeling, solving linear programming using graphical and simplex method.	3
2.	The simplex method.	3
3.	Duality and Sensitivity Analysis.	3
4.	Transportation Problems.	3
5.	Assignment Problems	3
6	First Midterm exam	3
7.	Network Optimization	3
8.	Nonlinear programming: Constrained optimization: theory of Lagrange, KKT condition.	3
9	Second Midterm exam	3
10.	Nonlinear programming: Convexity and optimization: Implications for Unconstrained and Constrained Optimization.	6
11.	Dynamic programming and Integer programming.	9
12	Multicriteria optimization, MATLAB or Tora optimization toolbox.	3
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes	Continuous Evaluation	10 %
2.	Assignments, report	Continuous Evaluation	10 %
3.	Midterm 1 Exam	8-9	15%
4.	Midterm 2 Exam	12-13	15%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
5.	Final Exam	15-16	50%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	S. S. Rao, Engineering Optimization: Theory and Practice, 4th Edition, john willy, 2009. ISBN: 9780470183526
Supportive References	H. A. Taha, "Operations Research: An Introduction," 9th Edition, Pearson, 2011, ISBN-10: 013255593X ISBN-13: 978-0132555937
Electronic Materials	Lectures available in Blackboard
Other Learning Materials	None

2. Required Facilities and equipment

Items	Resources	
facilities		
(Classrooms, laboratories, exhibition rooms,	Classrooms	
simulation rooms, etc.)		
Technology equipment	Data abow Plaakbaard	
(projector, smart board, software)	Data show, Blackboard	
Other equipment		
(depending on the nature of the specialty)	None	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Program Leader	Direct & Indirect
Effectiveness of student's assessment	Faculty, Program Leader	Direct
Quality of learning resources	Students, Faculty	Indirect
The extent to which CLOs have been achieved	Faculty	Direct & Indirect
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	Department Council
REFERENCE NO.	4
DATE	October 2023

