

Course Specifications

Course Title:	ANALYSIS AND DESIGN OF ALGORITHMS
Course Code:	501435-3
Program:	Bachelor in Computer Science
Department:	Department of Computer Science
College:	College of Computers and Information Technology
Institution:	Taif University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strateg Methods	ies and Assessment 4
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	5
H. Specification Approval Data	6

A. Course Identification

1. Credit hours: 3		
2. Course type		
a. University College Department X Others		
b. Required x Elective		
3. Level/year at which this course is offered: 10 th Level/4		
4. Pre-requisites for this course (if any): 501324-3		
5. Co-requisites for this course (if any): None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	5	100
2	Blended	0	0
3	E-learning	0	0
4	Distance learning	0	0
5	Other	0	0

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	50
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	50

B. Course Objectives and Learning Outcomes

1. Course Description

Algorithm is the central concept of Computer Science. This course provides introduction to algorithm design and analysis. Students study techniques for designing algorithms and for analyzing the time and space efficiency of algorithms. The algorithm design techniques include divide-and-conquer, greedy technique, dynamic programming, backtracking and branch and bound. The algorithm analysis includes computational models, computational complexity, and computation of best, average and worst case complexity. The course also includes study of limits of algorithmic methods (e.g. NP-hard, NP-complete problems).

2. Course Main Objective

Students at the end of this course are able to:

- Understand different algorithm design techniques
- Design an efficient algorithm for a given task using the most suitable design technique
- Understand major classical algorithms available for different tasks

• Analyze the algorithms for different problems. Ability to differentiate between problems that can be solved by polynomial time algorithm and problems for which no polynomial time algorithm is known.

3. Course Learning Outcomes

CLOs		Aligned PLOs
1	Knowledge and Understanding	
	Describe principles of algorithm design	K 1
2	Skills:	
2.1	Apply mathematical preliminaries to design and analyze stages of different types of algorithms	S 1
2.2	Analyze the performance of different algorithms	S1
2.3	Design an efficient algorithm for a particular task	S2
2.4	2.4 Compare problems that can be solved by polynomial time algorithm and problems for which no polynomial time algorithm is known	
3	Values:	_

C. Course Content

No	List of Topics	
1	Algorithm-Introduction, Computational Model, Pseudocode	5
2	Algorithmic Analysis, Growth Rate, Asymptotic Notation	5
3	3 Recurrence Equations, Solving recurrence equations	
4	4 Time and space complexities, Average, best and worst case analysis	
5	5 Divide and Conquer Technique	
6	6 Greedy Technique, Dynamic Programming	
7	7 Backtracking Technique, Branch and Bound Technique	
8	8 NP-Complete Problems: Basic Concepts and Problems	
Total		

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
	Understand principles of algorithm design	Lectures/Tutorial	Direct Assessment Tool Quizzes / Homework/Excercise / Exams Indirect Assessment Tool Course Exit Survey
2.0	Skills		

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
2.1	Apply mathematical preliminaries to design and analyze stages of different types of algorithms	Lectures/Tutorial	Direct Assessment Tool Quizzes / Homework/ Exams Indirect Assessment Tool Course Exit Survey
2.2	Analyze the performance of different algorithms	Lectures/Tutorial	Direct Assessment Tool Quizzes / Homework/ Exams Indirect Assessment Tool Course Exit Survey
2.3	Design an efficient algorithm for a particular task	Lectures/Tutorial/ Project	Direct Assessment Tool Quizzes / Homework/ Exams Indirect Assessment Tool Course Exit Survey
2.4	Compare problems that can be solved by polynomial time algorithm and problems for which no polynomial time algorithm is known	Lectures/Tutorial	Direct Assessment Tool Quizzes / Homework/ Exams Indirect Assessment Tool Course Exit Survey
3.0	Values		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Project	Week 10	10%
2	Quizzes	Week 2, 3 & 7	20%
3	Mid-Term	Week 6	30%
4	Final Examination	Week 12	40%

^{*}Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

- 6 hours per week in pre-determined office hours
- Consultation by appointment (as needed)
- Through emails
- Through BlackBoard Learn

F. Learning Resources and Facilities

1.Learning Resources

	Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer
Required Textbooks	Algorithms, 2008
Required Textbooks	ISBN-10: 9788173716126
	ISBN-13: 978-8173716126
Essential References	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and
	Clifford Stein, Introduction to Algorithms, MIT Press, 1989.
Materials	ISBN: 0262533057, 9780262533058
	• http://openclassroom.stanford.edu/MainFolder/CoursePage.php?c
Electronic Materials	ourse=IntroToAlgorithms
Electronic Materials	• https://www.tru.ca/distance/courses/comp3051.html
	https://www.tutorialspoint.com/design_and_analysis_of_algorithms/
Other Learning	
Materials	
iviaterials	

2. Facilities Required

2. I acmies required	
Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 Classroom with 25 chairs Lab with 15 PCs and required software tools
Technology Resources (AV, data show, Smart Board, software, etc.)	Video projector / data showWhite board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Ouality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of Teaching	• Students	Students surveys and Students course evaluation •
Improvement of Teaching	Course Coordinator	 Deficiencies based on the student Evaluation, faculty input, course file, and program assessment
Verifying Standards of Student Achievement	Curriculum Committee	 Review CAF (Course assessment file) Alumni surveys. Periodic exchange and remarking of tests or a sample of assignments with staff at another

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	CS council
Reference No.	Meeting #12
Date	23-10-1443

