

Course Specifications

Course Title:	Physics (2)
Course Code:	203207-4
Program:	Bachelor in information technology
Department:	Department of Physics
College:	College of Science
Institution:	Taif University

Table of Contents

A. Course Identification	3
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	3
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	4
D. Teaching and Assessment	4
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	t 4
2. Assessment Tasks for Students	4
E. Student Academic Counseling and Support	5
F. Learning Resources and Facilities	5
1.Learning Resources	5
2. Facilities Required	5
G. Course Quality Evaluation	5
H. Specification Approval Data	6

A. Course Identification

1. Credit hours:4
2. Course type
a. University College $$ Department Others
b. Required $$ Elective
3. Level/year at which this course is offered: 5/2
4. Pre-requisites for this course (if any): Physics (1) (203206-4)
5. Co-requisites for this course (if any): NON

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	8	100%
2	Blended	0	0
3	E-learning	0	0
4	Distance learning	0	0
5	Other	0	0

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	50
2	Laboratory/Studio	30
3	Tutorial	0
4	Others (specify)	0
	Total	80

B. Course Objectives and Learning Outcomes

1. Course Description

This course covers important parts in electricity and magnetism. Students will study electric fields, electric flux, Gauss's law and its applications. Magnetic fields and magnetic forces. Sources of the magnetic field. Finally, Faraday's law, Lenz's law, electromotive force and some different types of AC circuits will be studied.

2. Course Main Objective

- Establishes a foundation in electricity and magnetism.
- Introduces main topics such as electric field and flux, magnetic fields and the magnetic forces, Faraday's law and AC circuits, electromagnetism, and its applications.
- Recognizes the connection between electricity and magnetism and its applications. Gives an overview and understanding of basic physics, with moderate use of mathematical formalism.

3. Course Learning Outcomes

	CLOs	Aligned PLOs
1	Knowledge and Understanding	
1.1	Understand the fundamental principles of electricity and magnetism.	K1
1.2	Understand fundamentals equations (Laws) and linking them to corresponding phenomena.	K1
1.3	Identify the basic concepts and theories of electric fields, magnetic fields, source of magnetic fields, and alternating current circuits.	K1
2	Skills :	
2.1	Apply the main fundamental laws and theories to solve the problems of electric fields, magnetic fields, source of magnetic fields, and alternating current circuits.	S1
2.2	Develop a skill versatility in solving problems in electric fields, magnetic fields, source of magnetic fields, and alternating current circuits.	S1
2.3	Analyze qualitatively and quantitatively experimental data of electricity and magnetism.	S1
3	Values:	
3.1	Work effectively and responsibly even in teamwork in performing activities and experiments.	V2
3.2	Act responsibly and ethically in conducting their work.	V1

C. Course Content

No	List of Topics	Contact Hours
1	 <u>Unit 1:</u> Electric fields Electric field of a continuous charge distribution Electric field lines Motion of charged particles in a uniform electric field Gauss's law Applications of Gauss's law to various charge distributions 	
2	 Unit 2: Magnetic fields Magnetic fields and forces Magnetic force acting on a current-carrying conductor Torque on a current loop in a uniform magnetic field Motion of a charged particle in a uniform magnetic field Applications involving charged particles moving in a magnetic field Velocity selector Mass spectrometer 	10
3	 Unit 3: Sources of the Magnetic field: The Biot-Savart Law The magnetic force between two parallel conductors Amperes Law The magnetic field of a solenoid Magnetic flux Gauss's Law in magnetism 	10
4	<u>Unit 4:</u> Induced electromotive forceFaraday's law of induction	10

	 Some applications of faradays law 	
	 Lenz's law 	
	Unit 5: Alternating current circuits	10
	 AC sources 	
	 Resistors in an AC circuits 	
5	 Inductors in an AC circuits 	
5	 Capacitor in an AC circuits 	
	 The RLC series circuit 	
	 Power in an AC circuit 	
	 Resonance in a series RLC circuit 	
	Part 2	
1	Introduction	3
2	Experiment 1:	3
Z	Kirchhoff's Laws	3
3	Experiment 2:	3
3	Voltage transformation with a transformer	3
	Experiment 3:	
4	Determination of self-inductance of an inductive coil in a series RL AC	3
	circuit	
5	Experiment 4:	3
3	Determination of the capacitance of a capacitor in a series RC AC circuit	3
6	Experiment 5:	3
0	Charging and discharging of capacitor	3
7	Experiment 6:	3
/	Use of Oscilloscope in measurement of AC Voltage and Frequency	3
	Experiment 7:	
8	Relationship between V_{pp} , V_m and V_{rms} in the calibration of Oscilloscope	3
	and/or potentiometer	
9	Experiment 8:	3
7	Tangent galvanometer	3
10	Experiment 9:	3
10	Resonance RLC AC circuit	3
	Total	80

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Understand the fundamental principles of electricity and magnetism.	Lecture Discussion	Written Exams Quizzes Assignments
1.2	Understand fundamentals equations (Laws) and linking them to corresponding phenomena.	Lecture Discussion	Written Exams Quizzes Assignments
1.3	Identify the basic concepts and theories of electric fields, magnetic	Lecture Discussion	Written Exams Quizzes

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	fields, source of magnetic fields, and alternating current circuits.		Assignments
2.0	Skills		
2.1	Apply the main fundamental laws and theories to solve the problems of electric fields, magnetic fields, source of magnetic fields, and alternating current circuits.	Problem solving	Written exam Activities
2.2	Develop a skill versatility in solving problems in electric fields, magnetic fields, source of magnetic fields, and alternating current circuits.	Problem solving	Written exam Activities
2.3	Analyze qualitatively and quantitatively experimental data of electricity and magnetism.	Practical	Lab reports Lab exam
3.0	Values		
3.1	Work effectively and responsibly even in teamwork in performing activities and experiments.	Practical	Lab reports Lab exam Activities
3.2	Act responsibly and ethically in conducting their work.	Practical Discussion	Indirect evaluation

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm exam I	5 th	20%
2	Activities (Quiz)	Periodically	20%
3	Lab reports	Weekly	15%
4	Final Lab Exam	11 th	5%
5	Final exam	12 th	40%
6	Total		100%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

Academic advising and counseling of students is an important component of teaching; student academic advising is a mandatory requirement of College of Computers and Information Technology (CCIT). Appropriate student advising provides support needed for the student during times of difficulty. In addition, it helps the student to build a close relationship with his/her advisor and to provide student motivation and involvement with the institution.

In addition, since faculty are usually the first to recognize that a student is having difficulty, faculty members play a key role in developing solutions for the students or referring them to appropriate services. Faculty members also participate in the formal student-mentoring program.

Additional counseling is provided by course directors, who provide students with academic reinforcement and assistance and refer "at risk" students to the Vice Dean for Academic Affairs and the Vice Dean for female section.

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Instructors Notes Raymond A. Serway and John W. Jewett, Jr., Physics for Scientists and Engineers with Modern Physics, 9th Edition, Publisher: Brooks/Cole, Print ISBN-13: ISBN: 978-1133954057, (2014).
Essential References Materials	Raymond A. Serway, Chris Vuille, College Physics, 10th Edition, Publisher: Cengage Learning, 978-1285761954, (2014).
Electronic Materials	Interactive simulations for science and math: https://phet.colorado.edu/
Other Learning Materials	

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	 A Lecture room appropriate for maximum 25 students with a personal computer, a data show and a smart board. A Lab room appropriate for maximum 15 students with a personal computer, a data show and a smart board.
Technology Resources (AV, data show, Smart Board, software, etc.)	• Lab materials and required software
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Student Feedback on Effectiveness of Teaching	Students	Indirect
Evaluation of Teaching	 Pear reviewer Program coordinator Departmental council Faculty council 	Indirect
Improvement of Teaching	 Program coordinator Relevant committee	Direct
Quality of learning resources	StudentsInstructor	Indirect

Evaluation Areas/Issues	Evaluators	Evaluation Methods
	Faculty	
Extent of achievement of course learning outcomes,	 Program coordinator Instructor	Direct
Course effectiveness and planning for improvement	• Program coordinator Instructor	Indirect

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality of learning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

H. Specification Approval Data

Council / Committee	IT Department Council/ Executive program committee
Reference No.	11
Date	23/10/21443

