

Course Specifications

Course Title:	Introduction to Algorithm and Programming
Course Code:	СР32
Program:	Diploma in Programming and Computer Sciences
Department:	Technology department
College:	Applied College
Institution:	Taif University

Table of Contents

A. Course Identification	
6. Mode of Instruction (mark all that apply)	3
B. Course Objectives and Learning Outcomes	
1. Course Description	3
2. Course Main Objective	3
3. Course Learning Outcomes	3
C. Course Content	
D. Teaching and Assessment4	
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods	4
2. Assessment Tasks for Students	5
E. Student Academic Counseling and Support5	
F. Learning Resources and Facilities5	
1.Learning Resources	6
2. Facilities Required	6
G. Course Quality Evaluation6	
H. Specification Approval Data7	

A. Course Identification

1. Credit hours: 3
2. Course type
a. University College Department 🗸 Others
b. Required ✓ Elective
3. Level/year at which this course is offered: First Year Second Level
4. Pre-requisites for this course (if any):
None
5. Co-requisites for this course (if any):
None

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3	75%
2	Blended		
3	E-learning	1	25%
4	Distance learning		
5	Other		

7. Contact Hours (based on academic semester)

No	Activity	Contact Hours
1	Lecture	40
2	Laboratory/Studio	
3	Tutorial	
4	Others (specify)	
	Total	40

B. Course Objectives and Learning Outcomes

1. Course Description

This course presents fundamental concepts of problem-solving techniques in computer science and other computational sciences. Topics include: Problem-solving approaches and process, Arithmetic Expression, Debugging, Decision structures, Repetition Structures.

2. Course Main Objective

The course aims to develop organized logical thinking of the student. In this course, student view, consider, analyze, design, plan, work, and solve problems from a computational perspective. To gain general knowledge about modern computing and the concepts and thinking processes underlying modern digital technologies.

3. Course Learning Outcomes

	CLOs	AlignedPLO s
1	Knowledge and Understanding	
1.1	Specify concepts, techniques, and problem-solving steps in the field of computing and programming.	K1
1.2	Knows the different types of instructions (simple, conditional and iterative) that can compose an algorithm or a program .	K1

	CLOs	
2	Skills :	
2.1	Apply problem-solving process in the field of computing.	S 2
2.2	Choose appropriate solution and techniques to solve common real-life problems.	S2
2.3	Write pseudo code and select appropriate solutions to solve problems	S 2
3	Values:	

C. Course Content

No	List of Topics	Contact Hours
1	Introduction to Computers and Programming and Problem-solving process –I (Input and output, programming process)	4
2	Problem-solving process-II (System development, pseudo-code and process-III (Flowchart)	4
3	Arithmetic Expression-I (Variables and basic types, mathematical expressions, Order of Operations, Associativity of Operators, Grouping with Parentheses)	4
4	Arithmetic Expression-II (Algebraic Expressions, Postfix expression, Prefix expression, Multiple Assignment and Combined Assignment)	4
5	Tracing a Program (Focus on debugging: Hand tracing a Program, Focus problem solving: A case study)	4
6	Decision Structures-I (Relational Operators, Relational Expressions, Logical Operators)	4
7	Decision Structures-II (Flowchart for Evaluating a Decision- (Single, double, multi-way, nested), Solving problems using decisions structures)	4
8	Repetition Structures-I (The Increment and Decrement Operators, Repetition Flowchart (Pre-test loop (e.g., while loop), Post-test loop (e.g., do-while loop))	4
9	Repetition Structures-II (Repetition Flowchart(Counting loop (e.g., for loop), Nested loop structures))	4
10	Repetition Structures-III (Deciding which repetition structure to use, Solving problems using repetition structures)	4
	Total	40

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge and Understanding		
1.1	Specify concepts, techniques, and problem-solving steps in the field of computing and programming.	Lectures	Direct Assessment Quizzes / Project Exams Indirect Assessment Course Exit Survey
1.2	Knows the different types of instructions (simple, conditional and	Lectures	Direct Assessment Quizzes / Project

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
	iterative) that can compose an		Exams
	algorithm or a program .		Indirect Assessment
			Course Exit Survey
2.0	Skills		
	Apply problem-solving process in the		Direct Assessment
	field of computing.	Lectures	Quizzes / Homework
2.1		Lectures	Project / Exams
			Indirect Assessment
			Course Exit Survey
	Choose appropriate solution and		Direct Assessment
	techniques to solve common real-life	Lectures	Quizzes / Homework
2.2	problems.	Lectures	Project / Exams
			Indirect Assessment
			Course Exit Survey
			Direct Assessment
	Write pseudo code and select appropriate solutions to solve	Lectures	Quizzes / Homework
2.3			Project / Exams
	problems		Indirect Assessment
	_		Course Exit Survey
3.0	Values		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	HomeWorks/StudentParticipation-Attendance/quiz	Every Week	20%
2	Project	From week 3 to week 8	10%
3	Mid-Term	6	20%
4	Final Examination	12	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice :

• Providing a guide for each group of students, and distributing student lists electronically to faculty members.

• There is an academic advising guide that defines the role of the faculty member in the academic advising process.

• The program supervisor is available throughout the year to answer student inquiries.

• Availability of full information about the program and its members and ways to communicate with them.

• Use the Learning Management System (Black Board) to communicate with students

F. Learning Resources and Facilities

1.Learning Resources

Required Textbooks	Sprankle, Maureen, and Jim Hubbard. Problem solving & programming concepts. Upper Saddle River, NJ: Pearson Prentice Hall, 9th edition, 2011.
Essential References Materials	Wang, Paul S. From computing to computational thinking. Chapman and Hall/CRC, 2016.
Electronic Materials	
Other Learning Materials	http://www.flowgorithm.org/download/index.htm

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Classroom with 25 chairs
Technology Resources (AV, data show, Smart Board, software, etc.)	Video projector / data showWhite board
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	Null

G. Course Quality Evaluation

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Effectiveness of teaching	 Students Faculty members Coordinator Program Leaders 	 Course exit survey Feedback from Faculty members Feedback from Course Coordinator Feedback from Quality Committees
Effectiveness of assessment	Faculty membersCoordinatorProgram Leaders	 Feedback from Faculty members Feedback from Course Coordinator Feedback from Program Leader
Extent of course achievement	StudentsCoordinatorFaculty members	 Course exit survey Curriculum Committees Feedback from Course Coordinator Feedback from Program

Evaluation Areas/Issues	Evaluators	Evaluation Methods
Extent of course learning outcomes	 Faculty members Coordinator Program Leaders Quality Committees 	Leader Course exit survey Curriculum Committees Feedback from Course Coordinator Feedback from Program Leader Feedback from Quality Committees
Quality of learning resources	StudentsFaculty membersCoordinator	 Course exit survey Course exit survey Curriculum Committees Feedback from Course Coordinator Feedback from Program Leader

Evaluation areas (e.g., Effectiveness of teaching and assessment, Extent of achievement of course learning outcomes, Quality oflearning resources, etc.)

Evaluators (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods(Direct, Indirect)

H. Specification Approval Data

Council / Committee	
Reference No.	
Date	