

Course Specification — (Postgraduate)

Course Title: Differential Geometry

Course Code: 202617-3

Program: Master of Pure Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Taif university

Version: 1

Last Revision Date: 20\5\2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	5
E. Learning Resources and Facilities:	5
F. Assessment of Course Quality:	6
G. Specification Approval Data:	6

A. General information about the course:

1. Course Identification:

1. Credit hours: (3)

2. Course type

Α.	□University	□College	🛛 Department	□Track
Β.	oxtimes Required		□Electi	ive

3. Level/year at which this course is offered: Level 1/First Year

4. Course general Description:

This course covers the following fundamentals of differential Geometry: Topological perquisites – Topological manifolds – Differential manifolds – Differential submanifolds – Tangent and co-Tangent spaces – Vector fields on manifolds – Covariant derivatives – Curvature tensors.

5. Pre-requirements for this course (if any):

None.

6. Pre-requirements for this course (if any):

None.

7. Course Main Objective(s):

- 1. Study topological perquisites
- 2. Study topological manifolds
- 3. Study differential manifolds
- 4. Study differential submanifolds
- 5. Study tangent and co-tangent spaces
- 6. Study vector fields on manifolds
- 7. Study covariant derivatives
- 8. Study curvature tensors
- 2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	V	100%
2	E-learning	-	-
3	Hybrid	-	-

No	Mode of Instruction	Contact Hours	Percentage
	Traditional classroom		
	• E-learning		
4	Distance learning	-	-

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unders	tanding		
1.1	Recognize topological perquisites and topological manifolds.	K1	• Lectures	ExamsAssignments
1.2	Describe differential manifolds and differential submanifolds	K3	• Lectures	ExamsAssignments
2.0	Skills			
2.1	Apply the recognitions of the differential manifolds and submanifolds to find covariant derivatives curvature tensors	S1	• Lectures	ExamsAssignments
2.2	Demonstrate the tangent and co- tangent spaces and vector fields on manifolds	S5	• Lectures	ExamsAssignments

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.0	Values, autonomy, and	responsibility		
3.1	Participate effectively within groups and independently.	V1	 Projects. 	Through the oral presentation of the projects
3.2	Give responsibility for learning importance and continuing personal and professional development.	V2	 Projects. 	Through the oral presentation of the projects

C. Course Content:

No	List of Topics	Contact Hours
1	Topological perquisites	3
2	Topological manifolds	6
3	Differential manifolds	6
4	Differential submanifolds	6
5	Tangent and co-tangent spaces	6
6	Vector fields on manifolds	6
7	Covariant derivatives	6
8	Curvature tensors	6
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignments, projects and homework	Continues	10 %
2.	Midterm exam	6th -7th	20%
3.	Final exam	16-17	70%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	John M. Lee, Introduction to smooth manifolds, Springer, 2002
Supportive References	An Introduction to Modern Differential Geometry. B. B. SINHA.
Electronic Materials	https://link.springer.com/book/10.1007/978-1-4419-7400-6
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (Projector, smart board, software)	data show
Other equipment (Depending on the nature of the specialty)	None

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Program Leader	Direct& Indirect
Effectiveness of students assessment	Faculty, Program Leader	Direct
Quality of learning resources	Students, Faculty	Indirect
The extent to which CLOs have been achieved	Faculty	Direct& Indirect
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department Council
REFERENCE NO.	
DATE	7/4/1445

قسم الرياضيات والإحصاء Mathematics and Statistics Department

