



# Course Specification (Postgraduate)

**Course Title Approximation Theory and Boundary Value Problem** 

**Course Code**: 202650-3

**Program: Master of Pure Mathematics** 

**Department:** Mathematics and Statistics

**College:** Science

Institution: Taif university

Version: 1

Last Revision Date: 20/10/2023







## **Table of Contents**

| A. General information about the course:                                        | 3 |
|---------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods: | 4 |
| C. Course Content:                                                              | 5 |
| D. Students Assessment Activities:                                              | 6 |
| E. Learning Resources and Facilities:                                           | 6 |
| F. Assessment of Course Quality:                                                | 6 |
| G. Specification Approval Data:                                                 | 7 |





#### A. General information about the course:

#### **1. Course Identification:**

#### 1. Credit hours: (3)

| 2. C | ourse type  |          |             |        |
|------|-------------|----------|-------------|--------|
| Α.   | □University | □College | □Department | □Track |
| •    |             |          |             |        |

B. □Required ⊠ Elective

3. Level/year at which this course is offered: Level 1/First Year

#### 4. Course general Description:

Approximation theory and methods for functions' approximation; Discrete Approximation-Continuous Approximations; Chebyshev polynomials; Legendre polynomials and Pad e approximation; Rational best approximation; Orthogonal polynomials; Adomian decomposition method; homotopy perturbation method (HPM); Reduced differential transform method (RDTM); Homotopy analysis method; Homotopy analysis transform method; Optimal q- homotopy analysis method (oq-HAM).

#### 5. Pre-requirements for this course (if any):

None

#### 6. Pre-requirements for this course (if any):

None

#### 7. Course Main Objective(s):

- 1. Study approximation theory and methods for functions' approximation.
- 2. Study discrete Approximation-Continuous Approximations.
- 3. Study Chebyshev polynomials.
- 4. Study Legendre polynomials and Pade approximation.
- 5. Study rational best approximation.
- 6. Study orthogonal polynomials
- 7. Study adomian decomposition method.
- 8. Study homotopy perturbation method (HPM).
- 9. Study reduced differential transform method (RDTM).
- 10. Study homotopy analysis method.
- 11. Study homotopy analysis transform method.
- 12. Study optimal q- homotopy analysis method (oq-HAM).

#### 2. Teaching Mode: (mark all that apply)





| No | Mode of Instruction            | Contact Hours | Percentage |
|----|--------------------------------|---------------|------------|
| 1  | Traditional classroom          | $\checkmark$  | 100%       |
| 2  | E-learning                     |               |            |
|    | Hybrid                         |               |            |
| 3  | Traditional classroom          |               |            |
|    | <ul> <li>E-learning</li> </ul> |               |            |
| 4  | Distance learning              |               |            |

#### 3. Contact Hours: (based on the academic semester)

| No | Activity          | Contact Hours |
|----|-------------------|---------------|
| 1. | Lectures          | 45            |
| 2. | Laboratory/Studio | NA            |
| 3. | Field             | NA            |
| 4. | Tutorial          | NA            |
| 5. | Others (specify)  | NA            |
|    | Total             | 45            |

## B. Course Learning Outcomes (CLOs), Teaching Strategies and

## **Assessment Methods:**

| Code | Course Learning Outcomes                                                                                                                                                                              | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies        | Assessment<br>Methods                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------------------|
| 1.0  | Knowledge and understanding                                                                                                                                                                           |                                         |                               |                                           |
| 1.1  | <b><u>Recognize</u></b> fundamentals of approximation theory and methods for functions' approximation.                                                                                                | K1                                      | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments            |
| 1.2  | <u><b>Describe</b></u> problems relating to the basic concepts in approximation theory and methods for functions' approximation                                                                       | K3                                      | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments            |
| 2.0  |                                                                                                                                                                                                       | Skills                                  |                               |                                           |
| 2.1  | <b><u>Apply</u></b> appropriate mathematical<br>and statistical theories, models,<br>and tools in solving various<br>problems of approximation theory<br>and methods for functions'<br>approximation. | S1                                      | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |





| Code | Course Learning Outcomes                                                                                                                                                                                                           | Code of CLOs<br>aligned with<br>program | Teaching<br>Strategies        | Assessment<br>Methods                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------------------|
| 2.2  | <b>Demonstrate</b> understanding the<br>important mathematical and<br>statistical concepts, principles,<br>theorems, formulas, computational<br>techniques in approximation theory<br>and methods for functions'<br>approximation. | S5                                      | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |
| 3.0  | Values, autonomy, and responsibility                                                                                                                                                                                               |                                         |                               |                                           |
| 3.1  | <b><u>Participate</u></b> effectively within groups and independently                                                                                                                                                              | V1                                      | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |
| 3.2  | <b><u>Give</u></b> responsibility for learning importance and continuing personal and professional development.                                                                                                                    | V2                                      | Lectures, group<br>discussion | Exams, Quizzes,<br>Assignments,<br>report |

## **C.** Course Content:

| No  | List of Topics                                                 | Contact Hours |
|-----|----------------------------------------------------------------|---------------|
| 1.  | Approximation theory and methods for functions' approximation. | 6             |
| 2.  | Discrete Approximation-Continuous Approximations.              | 3             |
| 3.  | Chebyshev polynomials.                                         | 6             |
| 4.  | Legendre polynomials-Pad e approximation.                      | 3             |
| 5.  | Rational best approximation, Orthogonal polynomials.           | 6             |
| 6.  | Adomian decomposition method.                                  | 3             |
| 7.  | Homotopy perturbation method (HPM).                            | 6             |
| 8.  | Reduced differential transform method (RDTM);                  | 6             |
| 9.  | Homotopy analysis method, Homotopy analysis transform method.  | 3             |
| 10. | Optimal q-homotopy analysis method (oq-HAM).                   | 3             |
|     | Total                                                          | 45            |





## **D. Students Assessment Activities:**

| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Quizzes and HomeWorks   | Continues                            | 10 %                                    |
| 2. | Midterm exam            | 8 <sup>th</sup> -9 <sup>th</sup>     | 20 %                                    |
| 3. | Final exam              | 16 <sup>th</sup>                     | 70%                                     |

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

## **E. Learning Resources and Facilities:**

#### **1. References and Learning Resources:**

| Essential References     | Numerical Approximation Methods for Elliptic Boundary<br>Value Problems: Finite and Boundary Elements (Texts in<br>Applied Mathematics), 2008th Edition, by Olaf Steinbach |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | Mathematical Theorems Boundary Value Problems and<br>Approximations<br>Edited by Lyudmila Alexeyeva, Published: December 9th<br>2020; DOI: 10.5772/intechopen.83329        |
| Electronic Materials     | DOI: 10.5772/intechopen.83329                                                                                                                                              |
| Other Learning Materials | None                                                                                                                                                                       |

#### **2.** Educational and Research Facilities and Equipment Required:

| Items                                                                                        | Resources                                        |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | Classrooms                                       |
| <b>Technology equipment</b><br>(Projector, smart board, software)                            | Data show, Blackboard, Maple and MATLAB software |
| <b>Other equipment</b><br>(Depending on the nature of the specialty)                         | Wi-Fi internet connections                       |

#### F. Assessment of Course Quality:

| Assessment Areas/Issues                 | Assessor | Assessment Methods |
|-----------------------------------------|----------|--------------------|
| Effectiveness of teaching               | Students | Indirect           |
| Effectiveness of students<br>assessment | Students | Indirect           |





| Assessment Areas/Issues                                                       | Assessor      | Assessment Methods |
|-------------------------------------------------------------------------------|---------------|--------------------|
| Quality of learning resources                                                 | Students      | Indirect           |
| The extent to which CLOs have<br>been achieved                                | Peer reviewer | Direct             |
| Other                                                                         |               |                    |
| Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) |               |                    |

Assessment Methods (Direct, Indirect)

## **G. Specification Approval Data:**

| COUNCIL /COMMITTEE | Department of Mathematics and Statistics |
|--------------------|------------------------------------------|
| REFERENCE NO.      | 11                                       |
| DATE               | 17-3-1445 H                              |





