

Course Title: Numerical Analysis

Course Code: 2024103-3

Program: Bachelor in Mathematics

Department: Mathematics and Statistics Department

College: Faculty of Sciences

Institution: Taif University

Version: 1

Last Revision Date: 20/05/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	
D. Students Assessment Activities	5
E. Learning Resources and Facilities	6
F. Assessment of Course Quality	6
G. Specification Approval	7

A. General information about the course:

1. Course Identification

1. Credit hours: 3 (3,0,0) h

2. Course type

Α.	□University	□College	🛛 Depa	rtment	Track	□Others
В.	🛛 Required			□Electi	ive	
3. L	3. Level/year at which this course is offered: Level 7 / 4th year					

4. Course general Description:

This course introduces the fundamental concepts of numerical methods and the relationship between numerical analysis and other branches of science. The course includes the classifications of numerical errors, numerical methods for solving nonlinear equations and linear system of equations, finite differences and interpolation, numerical differentiation, numerical integration, and numerical solution of ordinary differential equations.

5. Pre-requirements for this course (if any):

Ordinary differential equations (2022201-4)

6. Co-requirements for this course (if any):

None

7. Course Main Objective(s):

The student will be taught as follows:

- **1.** Developing and implementing numerically stable and accurate algorithms for all the basic tasks of computational science and engineering.
- 2. Finding acceptable approximate solutions when exact solutions are either impossible or so arduous and time-consuming as to be impractical.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3Hr/week	100%
2	E-learning		
3	HybridTraditional classroomE-learning		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
Total		45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understan	ding		
1.1	Define the fundamental concepts and basics knowledge of numerical analysis.	K1	LecturesGroup discussions	QuizzesAssignments
1.2	Classify numerical errors.	K1	LecturesGroup discussions	ExamsAssignments
2.0	Skills			
2.1	Apply numerical methods and computer language packages for solving a problem.	S 3	Interactive classesGroup discussions	 Quizzes Assignments
2.2	Use computing knowledge, skills and mathematical packages in information analysis and suggestion of solutions.	S 3	LecturesGroup discussions	ExamsQuizzes
3.0	Values, autonomy, and res	ponsibility		
3.1	Work effectively within groups and independently.	V 1	Projects	• Through the oral presentation of the projects.
3.2	Articulate ethical behavior associated with institutional Guidelines in classroom.	V3	Lectures	• Assignments

C. Course Content

No	List of Topics	Contact Hours
1.	Preliminaries of Computing : Basic concepts: Round-off Errors, Floating Point Arithmetic, Error Estimation, Convergence.	3
2.	Numerical Linear Algebra: Iterative methods: Jacobi's Iteration methods.	3
3.	Numerical Linear Algebra: Gauss-Seidal Iteration Methods.	3
4.	Numerical Solutions of nonlinear equations: Bisection Method. Newton Raphson's Method.	3
5.	Numerical Solutions of nonlinear equations : Successive Approximation Method (Fixed point iteration). Error Analysis for Iterative Methods.	3
6.	Numerical Solutions of nonlinear equations : Numerical Solutions of Nonlinear Systems of Equations.	3
7.	First Midterm exam	3
8.	Finite Differences and Interpolation : Finite Difference Operator, Interpolation with Equal Intervals : Newton's Forward Interpolation- Newton's Backward Interpolation.	3
9.	Interpolation with Unequal Intervals : Lagrange Formula- Newton 's Divided Difference.	3
10.	Numerical Differentiation : Numerical Differentiation: using Newton's forward interpolation- using Newton 's divided difference.	3
11.	Numerical Integration: Trapezoidal rule- Simpson's rule- Simpson's 3/8 rule.	3
12	Numerical Integration: Simpson's 3/8 rule and Error Analysis	3
13.	Second Midterm exam	3
14.	Initial Value Problem for Ordinary Differential Equations : Picard Method-Euler's method.	3
15	Initial Value Problem for Ordinary Differential Equations : Modified Euler's method- Runge-Kutta methods.	3
	Total	45

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes	Continuous Evaluation	10 %
2.	Assignments, report	Continuous Evaluation	10 %
3.	Midterm 1 Exam	8-9	15%

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
4.	Midterm 2 Exam	12-13	15%
5.	Final Exam	15-16	50%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	Richard L. Burden and J. Douglas Faires, Numerical Analysis (2011), 10th Edition. Student Edition: ISBN-10:0-534-39200-8.
Supportive References	Rao V. Dukkipati, (2010), Numerical Methods, 10th Edition, USA, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers. ISBN (13): 978-81-224-2978-7.
Electronic Materials	Lectures available in Blackboard
Other Learning Materials	Matlab tutorial

2. Required Facilities and equipment

Items	Resources
facilities	Classicama
(Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (projector, smart board, software)	Data show, Blackboard
Other equipment (depending on the nature of the specialty)	None

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students, Program Leader	Direct & Indirect
Effectiveness of students' assessment	Faculty, Program Leader	Direct
Quality of learning resources	Students, Faculty	Indirect
The extent to which CLOs have been achieved	Faculty	Direct & Indirect

Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewers, Others (specify) Assessment Methods (Direct, Indirect)

G. Specification Approval			
COUNCIL /COMMITTEE	Department Council		
REFERENCE NO.	4		
DATE	October 2023		
قسم الرياضيات والإحصاء			

Mathematics and Statistics Department

