

Course Specification

(Postgraduate)

Course Title Stability Theory of Differential Equations

Course Code: 202613-3

Program: Master of Pure Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Taif university

Version: 1

Last Revision Date: 20/10/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	
C. Course Content:	5
D. Students Assessment Activities:	5
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	6
G. Specification Approval Data:	7

A. General information about the course:

4	Course	I all a said to	C: + !	
1	I MIITCA	IMPHI	TICATI	nn:
4.	Course	IUCIILI	ııcatı	oi.

1. C	1. Credit hours: (3)					
2. C	ourse type					
A.	□University	□College	□Departme	nt	□Track	
В.	□Required		⊠ E	lecti	ive	
3. L	evel/year at wh	nich this course i	s offered: Le	vel	1/First Year	
4. C	ourse general D	Description:				
auto prop	nomous and non- erties of linear and	vith study of the bel autonomous syster almost linear systen ity and limit cycles a	ns, general thens, stability and	ory bou	of systems of diffendedness, energy m	erential equations,
5. Pre-requirements for this course (if any):						
None						
6. P	re-requirement	ts for this course	(if any)			
None						
7. C	ourse Main Obj	jective(s):				

- 1. Understanding the concept of stability of equilibrium points
- 2. Using different methods to determine the stability of the solutions of linear and nonlinear differential equation.
- 3. Perception of some applications of ordinary differential equations in different field in science.
- 2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	$\sqrt{}$	100%
2	E-learning		
3	HybridTraditional classroom		
4	• E-learning Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize the definitions and have deeper understanding of the concept of stability of equilibrium points.	K 1	Lectures, group discussion	Exams, Quizzes, Assignments
1.2	<u>Identify</u> different method to determine the stability of equilibrium points of linear and nonlinear differential equations,	K2	Lectures, group discussion	Exams, Quizzes, Assignments
2.0		Skills		
2.1	Apply different methods to determine the stability of equilibrium points of linear and nonlinear systems of ordinary differential equation	S1	Lectures, group discussion	Exams, Quizzes, Assignments, report
2.2	Employ the suitable methods for estimating the stability of a system of ordinary differential equation.	S2		
2.3	Explain the existence of limit cycles and periodic solutions of the system of ordinary differential equation.	S 3		
2.4	<u>Use</u> mathematical proofs.	S4		
2.5	<u>Demonstrate</u> how the stability theory can be applied in reallife application.	S5	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.0	Values, autonomy, and responsibility			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
3.1	Accept critical thinking, communication skills, and the stability of the differential equations.	V1	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.2	<u>Participate</u> the capability to use programing in solving differential equations systems problems.	V2		
3.3	Give ability of self-learning and self-assessment during solving mathematical problems .	V3	Lectures, group discussion	Exams, Quizzes, Assignments, report

C. Course Content:

No	List of Topics	Contact Hours
1.	Review of Higher Order Linear Equations and linear Systems: fundamental solutions, Wronskian, variation of constants, matrix exponential solution, behavior of solutions,	9
2.	Linear Systems with Periodic Coefficients, Abel Liouville formula, Lagrange Identity, Green's Formula.	9
3.	Phase Plane, Paths and Critical Points, Types of Critical points, Basic-Theorems on Stability, Application to Dynamics, Dependence on a Parameter	9
4.	Liapunov's Direct Method, stability theorems of system about critical points, Limit Cycles and Periodic Solutions,	9
5.	Bendixson's Nonexistence Criterion, Poincare-Bendixson Theorem, The Index of a Critical Point.	9
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes and HomeWorks	Continues	10 %
2.	Midterm exam	8 th -9 th	20 %
3.	Final exam	16 th	70%

^{*}Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

	1. G. Birkhoff and G.C., Rota. Ordinary Differential Equations, John Wiley and Sons inc., NY, 1978.
	2. S. L. Ross. Differential Equations, John Wiley and Sons inc., NY, 1984.
Essential References	3. D. Somasundaram. Ordinary Differential Equations, Narosa Publishing House, Chennai, 2008.
	4. G. F. Simmons. Differential Equations with Applications and Historical Notes, McGraw Hill, 1991.
	5. Differential equations, dynamical systems and an introduction to chaos By: Smale and Devaney
	Classrooms containing whiteboard and electronic monitors
Supportive References	Computer laboratory equipped with hardware and software. Math software(MATLB, LaTeX)
Electronic Materials	Laptop- Smart board- Projector., Wi Fi internet connection.
Other Learning Materials	None

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (Projector, smart board, software)	Data show, Blackboard, Maple and MATLAB software
Other equipment (Depending on the nature of the specialty)	Wi-Fi internet connections

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of students assessment	Students	Indirect

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Peer reviewer	Direct
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)
Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department of Mathematics and Statistics	
REFERENCE NO.	11	
DATE	17-3-1443 H	

