

Course Specification (Postgraduate)

Course Title: Theory of Thermoelasticity

Course Code: 202601-3

Program: Master of Applied Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Taif university

Version: 1

Last Revision Date: 20/10/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	6
G. Specification Approval Data:	7

A. General information about the course:

1. Course Identification:

1. Credit hours: (3)

2. Course type						
Α.	□University	□College	Departme	ent	□Track	
В.	□Required		\boxtimes	Electi	ve	
3. Level/year at which this course is offered: Level 3/Second Year						
4. Course general Description:						

This course introduces the main laws of theory of thermoelasticity. The course is intended to provide basic laws of Thermodynamics of elastic continuum; Basic Problems of Thermoelasticity; Heat conduction; Thermal Stresses; Coupled and Generalized Thermoelasticity.

5. Pre-requirements for this course (if any):

None

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

The student will be taught as follows:

- 1. To make students understand the Basic Laws of Thermoelasticity.
- 2. To make students conversant with Thermodynamics of Elastic Continuum.
- 3. To expose students to Basic Problems of Thermoelasticity.
- 4. To make student able to solve Heat conduction problems.
- 5. To make students conversant with Thermal Stresses in beams.
- 6. To make students understand the Coupled and Generalized Thermoelasticity.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	\checkmark	100%
2	E-learning		
3	HybridTraditional classroomE-learning		

No	Mode of Instruction	Contact Hours	Percentage
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and under	standing		
1.1	Describe the basic laws of Thermoelasticity.	K1	Lectures, group discussion	Exams, Quizzes, Assignments
1.2	RecognizeThermodynamicsofElastic Continuum.	K1	Lectures, group discussion	Exams, Quizzes, Assignments
1.3	Identify the Basic Problems of Thermo- elasticity.	K1	Lectures, group discussion	Exams, Quizzes, Assignments
2.0		Skills		
2.1	Demonstratethe basicproblemsofThermoelasticity.	S2	Lectures, group discussion	Exams, Quizzes, Assignments, report
2.2	ExplaintheHeatConductionandthermalstressesproblemswithvarioussolutionmethodologies.	S 2	Lectures, group discussion	Exams, Quizzes, Assignments, report

Code	Course Learning	Code of CLOs aligned	Teaching	Assessment
	Outcomes	with program	Strategies	Methods
2.3	<u>Use</u> mathematical techniques to analyze the thermoelasticity problems using software coding.	S 3	Lectures, group discussion	Exams, Quizzes, Assignments, report

3.0		Values, autonomy, and	responsibility	
3.1	Accept critical thinking, communication skills, and the thermoelasticity solutions to structural mechanics problems.	V1	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.2	Participate the capability to use programing in thermoelasticity problems.	V2	Lectures, group discussion	Exams, Quizzes, Assignments, report

C. Course Content:

No	List of Topics	Contact Hours
1.	Basic Laws of Thermoelasticity : Constitutive Laws of Linear Thermoelasticity- Displacement Formulation of Thermoelasticity- Stress Formulation of Thermoelasticity - Two-Dimensional Thermoelasticity.	9
2.	Thermodynamics of Elastic Continuum: Thermodynamics Definitions- First Law of Thermodynamics -Second Law of Thermodynamics-Variational- Formulation of Thermodynamics- Thermodynamics of Elastic Continuum.	6
3.	Basic Problems of Thermoelasticity. General Theory of Thermoelasticity– Temperature distribution for zero thermal stresses- General solutions of thermoelastic problems.	9
4.	Heat conduction. Fourier's Law and Heat Conduction Equation-Problems in rectangular cartesian coordinates.	6
5.	Thermal Stresses. Thermal stresses in beams – Boundary Conditions-Share stresses in beams.	9
6.	Coupled and Generalized Thermoelasticity. Governing equations of coupled thermoelasticiy - Generalized thermoelasticiy of a layer-Problems.	6
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes and HomeWorks	Continues	10 %
2.	Midterm exam	8 th -9 th	20 %
3.	Final exam	16 th	70%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	Richard B. Hetnarski and M. Reza Eslami, "Thermal Stresses-Advanced Theory and Applications", Springer (2008).	
Supportive References	Nowinski J. L., "Theory of Thermo-elasticity with Applications", Alpena a den Rijn (1978).	
Electronic Materials	https://nptel.ac.in/courses/105/105/105105177/	
Other Learning Materials	Nowacki W., "Thermo - Elasticity", PWN, Pergamon Press (1986). Nowacki W., "Theory of Asymmetric Elasticity", PWN, Pergamon Press (1981).	

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms containing whiteboard and electronic monitors
Technology equipment (Projector, smart board, software)	Laptop- Smart board- Projector.
Other equipment (Depending on the nature of the specialty)	Wi-Fi internet connections

F. Assessment of Course Quality:

Assessor	Assessment Methods
Students	Indirect
Students	Indirect
Students	Indirect
Peer reviewer	Direct
	Assessor Students Students Students Peer reviewer

Assessment Areas/Iss	ues	Assessor	Assessment Methods	
Other				
Assessor (Students, Faculty, Progr	am Leaders	, Peer Reviewer, Others (specify)		
Assessment Methods (Direct, Indirect)				
G. Specification Approval Data:				
COUNCIL /COMMITTEE	Department of Mathematics and Statistics			
REFERENCE NO.				
DATE	20/10/2023			

قسم الرياضيات والإحصاء Mathematics and Statistics Department

