Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus

Ji-Huan He a,*, S.K. Elagan b,1, Z.B. Li c

a National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, China
b Mathematics & Statistics Department, Faculty of Science, Taif University, PO. 888, Saudi Arabia
c College of Mathematics and Information Science, Qujing Normal University, Qujing, Yunnan 655011, China

Available online 25 November 2011
Received in revised form 16 November 2011
Received 20 September 2011
Communicated by R. Wu

Keywords:
Modified Riemann–Liouville derivative
Fractional complex transform
Chain rule for fractional calculus

A R T I C L E I N F O
Article history:
Received 20 September 2011
Received in revised form 16 November 2011
Accepted 18 November 2011
Available online 25 November 2011

A B S T R A C T
The fractional complex transform is suggested to convert a fractional differential equation with Jumarie’s modification of Riemann–Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction
Recently some effective methods for fractional calculus were appeared in open literature, such as the fractional complex transform [1–4], the homotopy perturbation method [5,6], the variational iteration method [7–12], the exp-function method [13], and the heat-balance integral method [14–16] and other analytical methods [17–22], among which the fractional complex transform [1–4] is the simplest approach, it is to convert the fractional differential equations into ordinary differential equations, making the solution procedure extremely simple.

Similar to wave transformation

\[\xi = qt + px + ky + lz \]

where \(p, q, k \) and \(l \) are constants, for nonlinear wave equations, e.g., the KdV equation, the fractional complex transform also admits a complex variable \(\xi \), instead of Eq. (1), defined as [1,2]

\[\xi = \frac{qt^\alpha}{\Gamma(1+\alpha)} + \frac{px^\beta}{\Gamma(1+\beta)} + \frac{ky^\gamma}{\Gamma(1+\gamma)} + \frac{lz^\lambda}{\Gamma(1+\lambda)} \]

where \(\alpha, \beta, \gamma, \) and \(\lambda \) are fractional orders.

Such transformation is valid only for general “wave” solutions for fractional differential equations. However, not every fractional differential equation has a “wave” solution, hence its application is limited.

In this Letter we suggest a modification to convert a fractional differential equation into its classical differential partner.

2. A modification of the fractional complex transform
Consider the following general fractional differential equation

\[f(u, u_x^{(\alpha)}, u_y^{(\beta)}, u_z^{(\gamma)}) = 0, \quad 0 < \alpha \leq 1, \quad 0 < \beta \leq 1, \quad 0 < \gamma \leq 1, \quad 0 < \lambda \leq 1 \]

where \(u_t^{(\alpha)} = D_t^\alpha u = D_t^\alpha u/DT^\alpha \) denotes Jumarie’s fractional derivation, which is a modified Riemann–Liouville derivative [23–26] defined as

\[D_t^\alpha u(t, x, y, z) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_0^t (t-\xi)^{-\alpha} \]

\[\times (u(\xi, x, y, z) - u(0, x, y, z)) d\xi \]

where \(u \) is a continuous (but not necessarily differentiable) function.

The modified fractional complex transform reads

\[T = \frac{qt^\alpha}{\Gamma(1+\alpha)} \]

\[X = \frac{px^\beta}{\Gamma(1+\beta)} \]
Consider a plane with fractal structure (see Fig. 1). The shortest path fractional order is equivalent to its fractional dimensions. Now, potential equations can best describe discontinuous media, and the correction yields Cantor-like sets, and its length can be expressed as

\[\text{This idea leads to the fractional complex transform, Eqs. (5)–(8).} \]

\[\frac{\partial^u u}{\partial t^\alpha} = \frac{\partial u}{\partial s} \frac{\partial^s s}{\partial t^\alpha}. \]

This chain rule is invalid.

Consider a counter example

\[u(t) = t^2, \quad s(x) = x^\beta, \quad \beta > 0. \]

Then we have

\[D_x^\alpha u(s(x)) = D_x^\alpha u(x^\beta) = D_x^\alpha x^\beta = \frac{x^{2\beta - \alpha}}{\Gamma(2\beta - \alpha + 1)} \Gamma(2\beta + 1). \]

We, therefore, find that

\[\frac{\partial^u u}{\partial t^\alpha} \neq \frac{\partial u}{\partial s} \frac{\partial^s s}{\partial t^\alpha}. \]

This discrepancy arises in non-commutative property in fractional calculus, that is \(D_x^\alpha + D_y^\beta \neq D_x^\alpha D_y^\beta \).

The chain rule hereby is actually a fractal space change, e.g., the fractal curve “AB” in Fig. 1 is projected to Cantor-like sets in horizontal direction. From Fig. 1, we have

\[\Delta_x AB = \cos \theta ds_e \]

or

\[\Delta_y AB = \frac{dx}{ds} ds_e \]

where \(\theta \) is the slope angle of straight line AB.

From the relations Eqs. (9) and (10), we have

\[k_x dx^{\alpha_x} = \frac{dx}{ds} ds^\alpha_k \]

or

\[dx^{\alpha_x} = k_x \frac{dx}{ds} ds^\alpha_k = \sigma \frac{dx}{ds} ds^\alpha \]

where \(\sigma = k/k_x \). We, therefore, have the following chain rule for fractional calculus

\[\frac{\partial^u u}{\partial t^\alpha} = \sigma \frac{\partial u}{\partial s} \frac{\partial^s s}{\partial t^\alpha}. \]

Using the following transforms,

\[s = t^\alpha, \quad (23a) \]

\[X = x^\beta, \quad (23b) \]

\[Y = y^\gamma, \quad (23c) \]

\[Z = z^\delta. \quad (23d) \]

We have

\[\frac{\partial^u u}{\partial t^\alpha} = \frac{\partial u}{\partial s} \frac{\partial^s s}{\partial t^\alpha} = \sigma \frac{\partial u}{\partial s}, \quad (24a) \]

\[\frac{\partial^u u}{\partial x^\beta} = \frac{\partial u}{\partial X} \frac{\partial^X X}{\partial x^\beta} = \sigma \frac{\partial u}{\partial X}, \quad (24b) \]

\[\frac{\partial^u u}{\partial y^\gamma} = \frac{\partial u}{\partial Y} \frac{\partial^Y Y}{\partial y^\gamma} = \sigma \frac{\partial u}{\partial Y}, \quad (24c) \]

\[\frac{\partial^u u}{\partial z^\delta} = \frac{\partial u}{\partial Z} \frac{\partial^Z Z}{\partial z^\delta} = \sigma \frac{\partial u}{\partial Z}, \quad (24d) \]

where \(\sigma, \sigma_x, \sigma_y, \sigma_z \) are fractal indexes. We can, therefore, easily convert fractional differential equations into partial differential equations.
equations, so that everyone familiar with advanced calculus can deal with fractional calculus without any difficulty.

To determine σ_s, we consider a special case $s = t^\alpha$ and $u = s^m$, and we have

$$\frac{\partial^\alpha u}{\partial t^\alpha} = \frac{\Gamma(1 + ma) \cdot t^{ma - \alpha}}{\Gamma(1 + ma - \alpha)} = \sigma \frac{\partial u}{\partial s} = \sigma s^m t^{ma - \alpha}.$$ \hfill (25)

We, therefore, can determine σ_s as follows

$$\sigma_s = \frac{\Gamma(1 + ma)}{m \Gamma(1 + ma - \alpha)}.$$ \hfill (26)

Other fractal indexes ($\sigma_X, \sigma_Y, \sigma_Z$) can be determined in a similar way.

5. An example

As an example, consider the fractional differential equation

$$\frac{\partial^\alpha u}{\partial t^\alpha} + Bu = 0, \quad 0 < \alpha < 1, \quad u(0) = 1.$$ \hfill (27)

We use this simple example to illustrate how to determine the fractal index. After the transform

$$s = t^\alpha$$ \hfill (28)

we assume that the solution can be expressed in a series in the form

$$u = \sum_{m=0}^{\infty} a_m s^m,$$ \hfill (29)

where a_m ($m = 0, 1, 2, 3, \ldots$) are constants to be further determined.

Submitting Eq. (29) into Eq. (27), we have

$$\frac{\partial}{\partial s} \sum_{m=0}^{\infty} \sigma_s a_m s^m + B \sum_{m=0}^{\infty} a_m s^m = 0$$ \hfill (30)

or

$$\sum_{m=0}^{\infty} m \sigma_s a_m s^{m-1} + B \sum_{m=0}^{\infty} a_m s^m = 0.$$ \hfill (31)

According to Eq. (26), the fractal index σ_s can be determined as follows

$$\sigma_s = \frac{\Gamma(1 + ma)}{m \Gamma(1 + ma - \alpha)}.$$ \hfill (32)

From Eqs. (31) and (32), we obtain

$$\frac{\Gamma(1 + ma)}{\Gamma(1 + ma - \alpha)} a_m + B a_{m-1} = 0.$$ \hfill (33)

Generally we begin with $u_0 = u(0) = 1$. After a simple calculation, we have

$$a_m = \frac{(-B)^m}{\Gamma(1 + ma)}.$$ \hfill (34)

We, therefore, obtain the following solution

$$u(s) = \sum_{m=0}^{\infty} \frac{(-B)^m}{\Gamma(1 + ma)} s^m.$$ \hfill (35)

or

$$u(t) = \sum_{m=0}^{\infty} \frac{(-B)^m}{\Gamma(1 + ma)} t^{ma} = E_a(-Bt^\alpha)$$ \hfill (36)

where E_a is a Mittag–Leffler function defined as

$$E_a(t) = \sum_{m=0}^{\infty} \frac{t^m}{\Gamma(1 + ma)}.$$ \hfill (37)

Eq. (36) is the exact solution of the example.

6. Conclusions

Hereby u is assumed to be differentiable with respective to $s, X, Y,$ and Z, and the fractional differential equations with Jumarie’s derivative can be easily converted into its classical differential partner by the fractional complex transform, hence everyone familiar with advanced calculus can easily deal with fractional calculus.

Acknowledgements

The second author contributes the counter-example in Section 4 alone, and the third author confirms the solution procedure given in the example, the first author contributes the geometrical explanation, determination of the fractal index, and the solution procedure. The first author thanks the reviewers for their careful reading and helpful comments.

The work is supported by PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions) and Yunnan Province NSF Grant No. 2011FB090.

References