

Course Specification (Postgraduate)

Course Title: Quantum Mechanics

Course Code: 202620-3

Program: Master of Pure Mathematics

Department: Mathematics and Statistics

College: Science

Institution: Taif university

Version: 1

Last Revision Date: 20/10/2023

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods:	4
C. Course Content:	5
D. Students Assessment Activities:	6
E. Learning Resources and Facilities:	6
F. Assessment of Course Quality:	6
G. Specification Approval Data:	7

A. General information about the course:

1. Course Identification:

1. Credit hours: (3)

2.	Course type
----	-------------

Α.	□University	□College

B. 🛛 Required

Elective

Department

3. Level/year at which this course is offered: Level 2/First Year

4. Course general Description:

Classical mechanics and the quantum theory of light and a comparison between them - The discovery of the electron - Classical quantum theory - Hypothesis of Bohr - The basics of quantum mechanics to wilson and applications on the oscillating harmonic- Time-dependent and time independent Schrödinger equation - Wave function and boundary conditions - Schrödinger equation in one dimension - The representation of dynamic change by moving the differential - Applications of the Schrödinger equation - Potential Barrer- Linear harmonic oscillator - Quantum mechanics by operators - The angular momentum in the quantum mechanics –Hydrogen atom-Eigen-vectors and eigenvalues of Boson and Farmion operators.-Annihilation and creation operators- quantum computer.

5. Pre-requirements for this course (if any):

None

6. Pre-requirements for this course (if any):

None

7. Course Main Objective(s):

The student will be taught as follows:

- 1. Introduce the fundamental concepts in quantum mechanics.
- 2. Explain the difference between the quantum and classical mechanics.
- 3. Study time-dependent and time independent Schrödinger equation
- 4. Study wave function and boundary conditions
- 5. Study the applications of the Schrodinger equation such as Potential Barrer
- 6. Study Linear harmonic oscillator
- 7. Study Quantum mechanics by operators
- 8. Study the angular momentum in the quantum mechanics
- 9. Study the Hydrogen atom
- 10. Study the eigen-vectors and eigenvalues of Boson and Farmion operators.
- 11. Study the annihilation and creation operators.

2. Teaching Mode: (mark all that apply)

No	Mode of Instruction	Conta

ct Hours

Percentage

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	\checkmark	100%
2	E-learning		
	Hybrid		
3	Traditional classroom		
	• E-learning		
4	Distance learning		

3. Contact Hours: (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	45
2.	Laboratory/Studio	NA
3.	Field	NA
4.	Tutorial	NA
5.	Others (specify)	NA
	Total	45

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods:

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and unders	standing		
1.1	<u>Recognize</u> the basic conceptions of the quantum mechanics.	K1	Lectures, group discussion	Exams, Quizzes, Assignments
1.2	Describethepropertiesoffunctionandschrödinger equation.	K2	Lectures, group discussion	Exams, Quizzes, Assignments
2.0		Skills		
2.1	Explainphysicalpropertiesofelementaryparticles,nucleons,atoms,moleculesand solids(band structure)basedonquantum	S 3	Lectures, group discussion	Exams, Quizzes, Assignments, report

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	mechanics.			
2.2	<u>Apply</u> the Schrödinger equation for simple one-dimensional systems.	S1	Lectures, group discussion	Exams, Quizzes, Assignments, report
2.3	Use the superposition principle to predict experimental outcomes for measurement of observables on simple quantum systems.	S4	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.0		Values, autonomy, and	responsibility	
3.1	Participate effectively within groups and independently.	V 1	Lectures, group discussion	Exams, Quizzes, Assignments, report
3.2	Accept critical thinking, communication skills and mathematical techniques in solving many problems in other disciplines	V3	Lectures, group discussion	Exams, Quizzes, Assignments, report

C. Course Content:

No	List of Topics	Contact Hours
	Historical development of quantum mechanics, understanding the physical	6
1.	phenomena at a microscopic level, the difference between classical and quantum mechanics	
2.	Planck's Hypothesis of Quantization of Energy, Bohr's Model of the Atom.	3
3.	Schrödinger equation, the statistical interpretation, probability, normalization, coordinate, momentum, the uncertainty principle.	6
4.	Stationary states, infinite square well.	6
5.	Free particle, delta-function potential, finite square well.	3
6.	Harmonic oscillator, Hydrogen atom	3
7.	Quantum mechanics in three dimensions	3
8.	The angular momentum in the quantum mechanics	6
9.	Eigen-vectors and eigenvalues of Boson and Farmion operators.	3
10.	Annihilation and creation operators	6
	Total	45

D. Students Assessment Activities:

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Quizzes and HomeWorks	Continues	10 %
2.	Midterm exam	8 th -9 th	20 %
3.	Final exam	16 th	70%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.)

E. Learning Resources and Facilities:

1. References and Learning Resources:

Essential References	Mathematical Methods of Classical Mechanics, v. I. Arnold 1978 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd edition, Pearson Prentice Hall, NJ, USA, 2004.	
Supportive References	R. L. Liboff, Introductory Quantum Mechanics, Addison Wesley, 2002.	
Electronic Materials	Publisher's website at https://en.wikipedia.org/wiki/Quantum_mechanics	
Other Learning Materials	s Calculus programming (Mathematica, Mathcad, Mathlab)	

2. Educational and Research Facilities and Equipment Required:

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	Classrooms
Technology equipment (Projector, smart board, software)	Data show, Blackboard, Maple and MATLAB software
Other equipment (Depending on the nature of the specialty)	Wi-Fi internet connections

F. Assessment of Course Quality:

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Students	Indirect
Effectiveness of students assessment	Students	Indirect
Quality of learning resources	Students	Indirect
The extent to which CLOs have been achieved	Peer reviewer	Direct
Other		

Assessor (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval Data:

COUNCIL /COMMITTEE	Department of Mathematics and Statistics	
REFERENCE NO.		
DATE	20/10/2023	

