



# Course Specification (Bachelor)

Course Title: Calculus II

**Course Code**: 2022104-4

**Program:** Bachelor in Mathematics

**Department:** Mathematics and Statistics Department

**College: Faculty of Sciences** 

Institution: Taif University

Version: 1

Last Revision Date: 20/05/2023







## **Table of Contents**

| A. General information about the course:                                          | 3 |
|-----------------------------------------------------------------------------------|---|
| B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment<br>Methods | 4 |
| C. Course Content                                                                 | 5 |
| D. Students Assessment Activities                                                 | 6 |
| E. Learning Resources and Facilities                                              | 6 |
| F. Assessment of Course Quality                                                   | 6 |
| G. Specification Approval                                                         | 7 |





### A. General information about the course:

### **1. Course Identification**

| 1. C                                                                 | redit hours: 4 |          |              |       |         |
|----------------------------------------------------------------------|----------------|----------|--------------|-------|---------|
|                                                                      |                |          |              |       |         |
| 2. C                                                                 | ourse type     |          |              |       |         |
| Α.                                                                   | □University    | □College | 🛛 Department | Track | □Others |
| B. Required   Elective                                               |                |          |              |       |         |
| 3. Level/vear at which this course is offered: Level 3 / Second Year |                |          |              |       |         |

### 4. Course general Description:

This course covers basics of calculus and how they can use to solve several problems. The course focus The Fundamental Theorem of Calculus, The Indefinite Integrals and The Net Change Theorem, studying most known techniques of integration (The Substitution Rule, Trigonometric Integrals, Integration by Parts, Trigonometric Substitution and Integration of Rational Functions by Partial Fractions). Improper integrals and applications of integration (Area Between Curves and Volume and, Volumes by Cylindrical Shells and Average Value of a Function and Arc Length of Curves). The course focuses also on the link between theory and practice.

5. Pre-requirements for this course (if any):

Calculus I (2021204-4)

### 6. Co -requirements for this course (if any):

None

### 7. Course Main Objective(s):

- 1. Understanding the elementary theorems and properties of Integral Calculus such as The Definite Integral, Fundamental Theorem of Calculus, Indefinite Integrals and The Net Change Theorem. And recognizing the Substitution Rule, Application of Integration (Area Between Curves, Volumes, Volumes by Cylindrical Shells, Average Value of a Function).
- 2. Applying the Techniques of Integration (Integration by Parts, Trigonometric Integrals, Trigonometric Substitution, and Integration of Rational Functions by Partial Fractions) and Illustrating the Applications of Integration (Area of a Surface Revolution, Applications to Physics and Engineering, Applications to Economics and Biology.





### 2. Teaching mode (mark all that apply)

| No | Mode of Instruction                                                       | Contact Hours | Percentage |
|----|---------------------------------------------------------------------------|---------------|------------|
| 1  | Traditional classroom                                                     | 4Hr /Week     | 100%       |
| 2  | E-learning                                                                |               |            |
| 3  | <ul><li>Hybrid</li><li>Traditional classroom</li><li>E-learning</li></ul> |               |            |
| 4  | Distance learning                                                         |               |            |

### 3. Contact Hours (based on the academic semester)

| No    | Activity          | Contact Hours |
|-------|-------------------|---------------|
| 1.    | Lectures          | 60            |
| 2.    | Laboratory/Studio | NA            |
| 3.    | Field             | NA            |
| 4.    | Tutorial          | NA            |
| 5.    | Others (specify)  | NA            |
| Total |                   | 60            |

# **B.** Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

| Code | Course Learning<br>Outcomes                                                                                 | Code of CLOs<br>aligned with<br>program | Teaching Strategies                                  | Assessment<br>Methods                           |
|------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|-------------------------------------------------|
| 1.0  | Knowledge and understa                                                                                      | nding                                   |                                                      |                                                 |
| 1.1  | <u>Memorize</u> the Definite<br>Integral Rules and the<br>Fundamental Theorem of<br>Calculus.               | K1                                      | <ul><li>Lectures</li><li>Group discussions</li></ul> | <ul><li> Quizzes</li><li> Assignments</li></ul> |
| 1.2  | Outline the rate of<br>convergence and<br>complexity requirements<br>of various optimization<br>algorithms. | K1                                      | <ul><li>Lectures</li><li>Group discussions</li></ul> | <ul><li>Exams</li><li>Assignments</li></ul>     |
| 2.0  | Skills                                                                                                      |                                         |                                                      |                                                 |





| Code | Course Learning<br>Outcomes                                                                           | Code of CLOs<br>aligned with<br>program | Teaching Strategies                                             | Assessment<br>Methods                           |
|------|-------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|
| 2.1  | <u>Evaluate</u> anti-derivatives,<br>indefinite and definite<br>integrals of elementary<br>functions. | S2                                      | <ul><li>Interactive classes</li><li>Group discussions</li></ul> | <ul><li> Quizzes</li><li> Assignments</li></ul> |
| 2.2  | <u>Calculate</u> definite<br>integrals for computing<br>areas, volumes and length                     | S2                                      | <ul><li>Lectures</li><li>Group discussions</li></ul>            | <ul><li>Exams</li><li>Quizzes</li></ul>         |
| 3.0  | Values, autonomy, and re                                                                              | esponsibility                           |                                                                 |                                                 |
| 3.1  | Realize the professional<br>and ethical responsibility<br>in conducting their work                    | V3                                      | • Lecture                                                       | <ul><li> Quizzes</li><li> Assignments</li></ul> |

### **C.** Course Content

| No  | List of Topics                                                                                                        | Contact Hours |
|-----|-----------------------------------------------------------------------------------------------------------------------|---------------|
| 1.  | The Definite Integral and The Fundamental Theorem of Calculus and the Indefinite Integrals and The Net Change Theorem | 4             |
| 2.  | Techniques of Integration (The Substitution Rule).                                                                    | 4             |
| 3.  | Techniques of Integration (Trigonometric Integrals)                                                                   | 4             |
| 4.  | Techniques of Integration (Trigonometric Substitution).                                                               | 4             |
| 5.  | Techniques of Integration (Integration of Rational Functions by Partial Fractions)                                    | 4             |
| 6.  | Techniques of Integration (Integration by Parts).                                                                     | 4             |
| 7.  | First Midterm exam,                                                                                                   | 4             |
| 8.  | Improper Integrals.                                                                                                   | 4             |
| 9.  | Application of Integration (Area Between Curves and Volumes)                                                          | 4             |
| 10. | Application of Integration (Volumes by Cylindrical Shells and Average Value of a Function                             | 4             |
| 11. | Further Applications of Integration (Arc Length of Curves).                                                           | 4             |
| 12  | Further Applications of Integration (Area of a Surface Revolution)                                                    | 4             |
| 13. | Second Midterm exam                                                                                                   | 4             |
| 14. | Further Applications of Integration (Applications to Physics and Engineering).                                        | 4             |
| 15  | Further Applications of Integration (Applications to Economics and Biology).                                          | 4             |
|     | Total                                                                                                                 | 60            |





| No | Assessment Activities * | Assessment<br>timing<br>(in week no) | Percentage of Total<br>Assessment Score |
|----|-------------------------|--------------------------------------|-----------------------------------------|
| 1. | Quizzes                 | Continuous<br>Evaluation             | 10 %                                    |
| 2. | Assignments, report     | Continuous<br>Evaluation             | 10 %                                    |
| 3. | Midterm 1 Exam          | 7-9                                  | 15%                                     |
| 4. | Midterm 2 Exam          | 12-13                                | 15%                                     |
| 5. | Final Exam              | 15-16                                | 50%                                     |

### **D. Students Assessment Activities**

\*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

### **E. Learning Resources and Facilities**

### **1. References and Learning Resources**

| Essential References     | H. Anton, I. Bivens and S. Davis, (2010), Calculus: Early<br>Transcendentals, International Student Version, 10th Edition, USA,<br>John Wiley & Sons, Inc |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Supportive References    | J. Stewart, (2012), Calculus: Early Transcendentals,7th edition, USA, Brooks/Cole                                                                         |
| Electronic Materials     | https://www.abebooks.com/book-search/title/calculus-early-<br>transcendentals-7th-edition/author/james-stewart/                                           |
| Other Learning Materials |                                                                                                                                                           |

### 2. Required Facilities and equipment

| Items                                                                                        | Resources             |
|----------------------------------------------------------------------------------------------|-----------------------|
| <b>facilities</b><br>(Classrooms, laboratories, exhibition rooms,<br>simulation rooms, etc.) | Classrooms            |
| <b>Technology equipment</b><br>(Projector, smart board, software)                            | Data show, Blackboard |
| <b>Other equipment</b><br>(Depending on the nature of the specialty)                         | None                  |

### F. Assessment of Course Quality

| Assessment Areas/Issues   | Assessor                 | Assessment Methods |
|---------------------------|--------------------------|--------------------|
| Effectiveness of teaching | Students, Program Leader | Direct & Indirect  |





| Assessment Areas/Issues                        | Assessor                | Assessment Methods |
|------------------------------------------------|-------------------------|--------------------|
| Effectiveness of students assessment           | Faculty, Program Leader | Direct             |
| Quality of learning resources                  | Students, Faculty       | Indirect           |
| The extent to which CLOs have been<br>achieved | Faculty                 | Direct & Indirect  |
| 0.1                                            |                         |                    |

#### Other

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify) Assessment Methods (Direct, Indirect)

### **G. Specification Approval**

| COUNCIL /COMMITTEE | Department Council |
|--------------------|--------------------|
| REFERENCE NO.      | 4                  |
| DATE               | October 2023       |



